104 research outputs found

    Global Patterns of Diversity and Metabolism of Microbial Communities in Deep‑sea Hydrothermal vent deposits

    Get PDF
    When deep-sea hydrothermal fluids mix with cold oxygenated fluids, minerals precipitate out of solution and form hydrothermal deposits. These actively venting deep-sea hydrothermal deposits support a rich diversity of thermophilic microorganisms which are involved in a range of carbon, sulfur, nitrogen, and hydrogen metabolisms. Global patterns of thermophilic microbial diversity in deep-sea hydrothermal ecosystems have illustrated the strong connectivity between geological processes and microbial colonization, but little is known about the genomic diversity and physiological potential of these novel taxa. Here we explore this genomic diversity in 42 metagenomes from four deep-sea hydrothermal vent fields and a deep-sea volcano collected from 2004 to 2018 and document their potential implications in biogeochemical cycles

    Distribution, Abundance, and Diversity Patterns of the Thermoacidophilic “Deep-Sea Hydrothermal Vent Euryarchaeota 2”

    Get PDF
    Cultivation-independent studies have shown that taxa belonging to the “deep-sea hydrothermal vent euryarchaeota 2” (DHVE2) lineage are widespread at deep-sea hydrothermal vents. While this lineage appears to be a common and important member of the microbial community at vent environments, relatively little is known about their overall distribution and phylogenetic diversity. In this study, we examined the distribution, relative abundance, co-occurrence patterns, and phylogenetic diversity of cultivable thermoacidophilic DHVE2 in deposits from globally distributed vent fields. Results of quantitative polymerase chain reaction assays with primers specific for the DHVE2 and Archaea demonstrate the ubiquity of the DHVE2 at deep-sea vents and suggest that they are significant members of the archaeal communities of established vent deposit communities. Local similarity analysis of pyrosequencing data revealed that the distribution of the DHVE2 was positively correlated with 10 other Euryarchaeota phylotypes and negatively correlated with mostly Crenarchaeota phylotypes. Targeted cultivation efforts resulted in the isolation of 12 axenic strains from six different vent fields, expanding the cultivable diversity of this lineage to vents along the East Pacific Rise and Mid-Atlantic Ridge. Eleven of these isolates shared greater than 97% 16S rRNA gene sequence similarity with one another and the only described isolate of the DHVE2, Aciduliprofundum boonei T469T. Sequencing and phylogenetic analysis of five protein-coding loci, atpA, EF-2, radA, rpoB, and secY, revealed clustering of isolates according to geographic region of isolation. Overall, this study increases our understanding of the distribution, abundance, and phylogenetic diversity of the DHVE2

    Thermocrinis minervae sp. nov., A Hydrogen and Sulfur-oxidizing, Thermophilic Member of the Aquificales from a Costa Rican Terrestrial Hot Spring

    Get PDF
    A thermophilic bacterium, designated strain CR11T , was isolated from a filamentous sample collected from a terrestrial hot spring on the south-western foothills of the Rincón volcano in Costa Rica. The Gram-negative cells are approximately 2.4–3.9 mm long and 0.5–0.6 mm wide and are motile rods with polar flagella. Strain CR11T grows between 65 and 85 6C (optimum 75 6C, doubling time 4.5 h) and between pH 4.8 and 7.8 (optimum pH 5.9–6.5). The isolate grows chemolithotrophically with S0 , S2O2{ 3 or H2 as the electron donor and with O2 (up to 16 %, v/v) as the sole electron acceptor. The isolate can grow on mannose, glucose, maltose, succinate, peptone, Casamino acids, starch, citrate and yeast extract in the presence of oxygen (4 %) and S0 . Growth occurs only at NaCl concentrations below 0.4 % (w/v). The G+C content of strain CR11T is 40.3 mol%. Phylogenetic analysis of the 16S rRNA gene sequence places the strain as a close relative of Thermocrinis ruber OC 1/4T (95.7 % sequence similarity). Based on phylogenetic and physiological characteristics, we propose the name Thermocrinis minervae sp. nov., with CR11T (5DSM 19557T 5ATCC BAA-1533T ) as the type strain

    Tetraether membrane lipids of Candidatus “Aciduliprofundum boonei”, a cultivated obligate thermoacidophilic euryarchaeote from deep-sea hydrothermal vents

    Get PDF
    The lipid composition of Candidatus “Aciduliprofundum boonei”, the only cultivated representative of archaea falling in the DHVE2 phylogenetic cluster, a group of microorganisms ubiquitously occurring at hydrothermal vents, was studied. The predominant core membrane lipids in this thermophilic euryarchaeote were found to be composed of glycerol dibiphytanyl glycerol tetraethers (GDGTs) containing 0–4 cyclopentyl moieties. In addition, GDGTs with an additional covalent bond between the isoprenoid hydrocarbon chains, so-called H-shaped GDGTs, were present. The latter core lipids have been rarely reported previously. Intact polar lipid analysis revealed that they predominantly consist of GDGTs with a phospho-glycerol headgroup

    Editorial: Genetics, genomics and -omics of thermophiles

    Get PDF
    Presentación de los contenidos de la revista.Facultad de Ciencias ExactasCentro de Investigación y Desarrollo en Fermentaciones Industriale

    Antibacterial Gene Transfer Across the Tree of Life

    Get PDF
    Though horizontal gene transfer (HGT) is widespread, genes and taxa experience biased rates of transferability. Curiously, independent transmission of homologous DNA to archaea, bacteria, eukaryotes, and viruses is extremely rare and often defies ecological and functional explanations. Here, we demonstrate that a bacterial lysozyme family integrated independently in all domains of life across diverse environments, generating the only glycosyl hydrolase 25 muramidases in plants and archaea. During coculture of a hydrothermal vent archaeon with a bacterial competitor, muramidase transcription is upregulated. Moreover, recombinant lysozyme exhibits broad-spectrum antibacterial action in a dose-dependent manner. Similar to bacterial transfer of antibiotic resistance genes, transfer of a potent antibacterial gene across the universal tree seemingly bestows a niche-transcending adaptation that trumps the barriers against parallel HGT to all domains. The discoveries also comprise the first characterization of an antibacterial gene in archaea and support the pursuit of antibiotics in this underexplored group

    Editorial: Genetics, genomics and -omics of thermophiles

    Get PDF
    Presentación de los contenidos de la revista.Facultad de Ciencias ExactasCentro de Investigación y Desarrollo en Fermentaciones Industriale

    Links from mantle to microbe at the Lau Integrated Study Site : insights from a back-arc spreading center

    Get PDF
    Author Posting. © The Oceanography Society, 2012. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 25, no. 1 (2012): 62–77, doi:10.5670/oceanog.2012.04.The Lau Integrated Study Site (ISS) has provided unique opportunities for study of ridge processes because of its back-arc setting in the southwestern Pacific. Its location allows study of a biogeographical province distinct from those of eastern Pacific and mid-Atlantic ridges, and crustal compositions along the ridge lie outside the range of mid-ocean ridge crustal compositions. The Lau ISS is located above a subduction zone, at an oblique angle. The underlying mantle receives water and other elements derived from the downgoing lithospheric slab, with an increase in slab influence from north to south. Water lowers the mantle melting temperature and leads to greater melt production where the water flux is greater, and to distinctive regional-scale gradients along the ridge. There are deeper faulted axial valleys with basaltic volcanism in the north and inflated axial highs with andesites in the south. Differences in igneous rock composition and release of magmatic volatiles affect compositions of vent fluids and deposits. Differences in vent fluid compositions and small-scale diffuse-flow regimes correlate with regional-scale patterns in microbial and megafaunal distributions. The interdisciplinary research effort at the Lau ISS has successfully identified linkages between subsurface processes and deep-sea biological communities, from mantle to microbe to megafauna.Support was provided by National Science Foundation grants OCE-1038135 to MKT, OCE-0732369 and OCE-0240985 to CRF, OCE-0732369 and OCE-0838107 to PRG, OCE-0242618 to CHL, OCE-0242902 and OCE-0752256 to PJM, OCE-0728391 and OCE-0937404 to A-LR, and a GRFP to RB

    New opportunities and untapped scientific potential in the abyssal ocean

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marlow, J., Anderson, R., Reysenbach, A.-L., Seewald, J., Shank, T., Teske, A., Wanless, V., & Soule, S. New opportunities and untapped scientific potential in the abyssal ocean. Frontiers in Marine Science, 8, (2022): 798943, https://doi.org/10.3389./fmars.2021.798943The abyssal ocean covers more than half of the Earth’s surface, yet remains understudied and underappreciated. In this Perspectives article, we mark the occasion of the Deep Submergence Vehicle Alvin’s increased depth range (from 4500 to 6500 m) to highlight the scientific potential of the abyssal seafloor. From a geologic perspective, ultra-slow spreading mid-ocean ridges, Petit Spot volcanism, transform faults, and subduction zones put the full life cycle of oceanic crust on display in the abyss, revealing constructive and destructive forces over wide ranges in time and space. Geochemically, the abyssal pressure regime influences the solubility of constituents such as silica and carbonate, and extremely high-temperature fluid-rock reactions in the shallow subsurface lead to distinctive and potentially unique geochemical profiles. Microbial residents range from low-abundance, low-energy communities on the abyssal plains to fast growing thermophiles at hydrothermal vents. Given its spatial extent and position as an intermediate zone between coastal and deep hadal settings, the abyss represents a lynchpin in global-scale processes such as nutrient and energy flux, population structure, and biogeographic diversity. Taken together, the abyssal ocean contributes critical ecosystem services while facing acute and diffuse anthropogenic threats from deep-sea mining, pollution, and climate change.We would like to thank the National Science Foundation for their support through grants NSF 2009117 and 2129431 to SAS
    corecore