257 research outputs found

    Random close packing of granular matter

    Full text link
    We propose an interpretation of the random close packing of granular materials as a phase transition, and discuss the possibility of experimental verification.Comment: 6 page

    Mechanisms for slow strengthening in granular materials

    Full text link
    Several mechanisms cause a granular material to strengthen over time at low applied stress. The strength is determined from the maximum frictional force F_max experienced by a shearing plate in contact with wet or dry granular material after the layer has been at rest for a waiting time \tau. The layer strength increases roughly logarithmically with \tau -only- if a shear stress is applied during the waiting time. The mechanisms of strengthening are investigated by sensitive displacement measurements and by imaging of particle motion in the shear zone. Granular matter can strengthen due to a slow shift in the particle arrangement under shear stress. Humidity also leads to strengthening, but is found not to be its sole cause. In addition to these time dependent effects, the static friction coefficient can also be increased by compaction of the granular material under some circumstances, and by cycling of the applied shear stress.Comment: 21 pages, 11 figures, submitted to Phys. Rev.

    Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 °C target by 2030 but not 2050

    Get PDF
    To meet the 1.5 °C target, methane (CH) from ruminants must be reduced by 11 to 30% by 2030 and 24 to 47% by 2050 compared to 2010 levels. A meta-analysis identified strategies to decrease product-based (PB; CH per unit meat or milk) and absolute (ABS) enteric CH emissions while maintaining or increasing animal productivity (AP; weight gain or milk yield). Next, the potential of different adoption rates of one PB or one ABS strategy to contribute to the 1.5 °C target was estimated. The database included findings from 430 peer-reviewed studies, which reported 98 mitigation strategies that can be classified into three categories: animal and feed management, diet formulation, and rumen manipulation. A random-effects meta-analysis weighted by inverse variance was carried out. Three PB strategies—namely, increasing feeding level, decreasing grass maturity, and decreasing dietary forage-to-concentrate ratio—decreased CH per unit meat or milk by on average 12% and increased AP by a median of 17%. Five ABS strategies—namely CH inhibitors, tanniferous forages, electron sinks, oils and fats, and oilseeds—decreased daily methane by on average 21%. Globally, only 100% adoption of the most effective PB and ABS strategies can meet the 1.5 °C target by 2030 but not 2050, because mitigation effects are offset by projected increases in CH due to increasing milk and meat demand. Notably, by 2030 and 2050, low- and middle-income countries may not meet their contribution to the 1.5 °C target for this same reason, whereas high-income countries could meet their contributions due to only a minor projected increase in enteric CH emissions.We thank the GLOBAL NETWORK project for generating part of the database. The GLOBAL NETWORK project (https://globalresearchalliance.org/research/livestock/collaborative-activities/global-research-project/; accessed 20 June 2020) was a multinational initiative funded by the Joint Programming Initiative on Food Security, Agriculture, and Climate Change and was coordinated by the Feed and Nutrition Network (https://globalresearchalliance.org/research/livestock/networks/feed-nutrition-network/; accessed 20 June 2020) within the Livestock Research Group of the Global Research Alliance on Agricultural GHG (https://globalresearchalliance.org; accessed 20 June 2020). We thank MitiGate, which was part of the Animal Change project funded by the EU under Grant Agreement FP7-266018 for sharing their database with us (http://mitigate.ibers.aber.ac.uk/, accessed 1 July 2017). Part of C.A., A.N.H., and S.C.M.’s time in the early stages of this project was funded by the Kravis Scientific Research Fund (New York) and a gift from Sue and Steve Mandel to the Environmental Defense Fund. Another part of C.A.’s work on this project was supported by the National Program for Scientific Research and Advanced Studies - PROCIENCIA within the framework of the "Project for the Improvement and Expansion of the Services of the National System of Science, Technology and Technological Innovation" (Contract No. 016-2019) and by the German Federal Ministry for Economic Cooperation and Development (issued through Deutsche Gesellschaft für Internationale Zusammenarbei) through the research “Programme of Climate Smart Livestock” (Programme 2017.0119.2). Part of A.N.H.’s work was funded by the US Department of Agriculture (Washington, DC) National Institute of Food and Agriculture Federal Appropriations under Project PEN 04539 and Accession no. 1000803. E.K. was supported by the Sesnon Endowed Chair Fund of the University of California, Davis

    Evolution and patterns of global health financing 1995-2014: development assistance for health, and government, prepaid private, and out-of-pocket health spending in 184 countries

    Get PDF
    Background An adequate amount of prepaid resources for health is important to ensure access to health services and for the pursuit of universal health coverage. Previous studies on global health financing have described the relationship between economic development and health financing. In this study, we further explore global health financing trends and examine how the sources of funds used, types of services purchased, and development assistance for health disbursed change with economic development. We also identify countries that deviate from the trends. Methods We estimated national health spending by type of care and by source, including development assistance for health, based on a diverse set of data including programme reports, budget data, national estimates, and 964 National Health Accounts. These data represent health spending for 184 countries from 1995 through 2014. We converted these data into a common inflation-adjusted and purchasing power-adjusted currency, and used non-linear regression methods to model the relationship between health financing, time, and economic development. Findings Between 1995 and 2014, economic development was positively associated with total health spending and a shift away from a reliance on development assistance and out-of-pocket (OOP) towards government spending. The largest absolute increase in spending was in high-income countries, which increased to purchasing power-adjusted 5221percapitabasedonanannualgrowthrateof305221 per capita based on an annual growth rate of 3·0%. The largest health spending growth rates were in upper-middle-income (5·9) and lower-middle-income groups (5·0), which both increased spending at more than 5% per year, and spent 914 and 267percapitain2014,respectively.Spendinginlowincomecountriesgrewnearlyasfast,at46267 per capita in 2014, respectively. Spending in low-income countries grew nearly as fast, at 4·6%, and health spending increased from 51 to 120percapita.In2014,592120 per capita. In 2014, 59·2% of all health spending was financed by the government, although in low-income and lower-middle-income countries, 29·1% and 58·0% of spending was OOP spending and 35·7% and 3·0% of spending was development assistance. Recent growth in development assistance for health has been tepid; between 2010 and 2016, it grew annually at 1·8%, and reached US37·6 billion in 2016. Nonetheless, there is a great deal of variation revolving around these averages. 29 countries spend at least 50% more than expected per capita, based on their level of economic development alone, whereas 11 countries spend less than 50% their expected amount. Interpretation Health spending remains disparate, with low-income and lower-middle-income countries increasing spending in absolute terms the least, and relying heavily on OOP spending and development assistance. Moreover, tremendous variation shows that neither time nor economic development guarantee adequate prepaid health resources, which are vital for the pursuit of universal health coverage.Joseph Dieleman, Madeline Campbell, Abigail Chapin, Erika Eldrenkamp Victoria Y Fan ... et al. Muktar Ahme

    Future and potential spending on health 2015-40: Development assistance for health, and government, prepaid private, and out-of-pocket health spending in 184 countries

    Get PDF
    Background The amount of resources, particularly prepaid resources, available for health can affect access to health care and health outcomes. Although health spending tends to increase with economic development, tremendous variation exists among health financing systems. Estimates of future spending can be beneficial for policy makers and planners, and can identify financing gaps. In this study, we estimate future gross domestic product (GDP), all-sector government spending, and health spending disaggregated by source, and we compare expected future spending to potential future spending. Methods We extracted GDP, government spending in 184 countries from 1980–2015, and health spend data from 1995–2014. We used a series of ensemble models to estimate future GDP, all-sector government spending, development assistance for health, and government, out-of-pocket, and prepaid private health spending through 2040. We used frontier analyses to identify patterns exhibited by the countries that dedicate the most funding to health, and used these frontiers to estimate potential health spending for each low-income or middle-income country. All estimates are inflation and purchasing power adjusted. Findings We estimated that global spending on health will increase from US921trillionin2014to9·21 trillion in 2014 to 24·24 trillion (uncertainty interval [UI] 20·47–29·72) in 2040. We expect per capita health spending to increase fastest in uppermiddle-income countries, at 5·3% (UI 4·1–6·8) per year. This growth is driven by continued growth in GDP, government spending, and government health spending. Lower-middle income countries are expected to grow at 4·2% (3·8–4·9). High-income countries are expected to grow at 2·1% (UI 1·8–2·4) and low-income countries are expected to grow at 1·8% (1·0–2·8). Despite this growth, health spending per capita in low-income countries is expected to remain low, at 154(UI133181)percapitain2030and154 (UI 133–181) per capita in 2030 and 195 (157–258) per capita in 2040. Increases in national health spending to reach the level of the countries who spend the most on health, relative to their level of economic development, would mean $321 (157–258) per capita was available for health in 2040 in low-income countries. Interpretation Health spending is associated with economic development but past trends and relationships suggest that spending will remain variable, and low in some low-resource settings. Policy change could lead to increased health spending, although for the poorest countries external support might remain essential.Global Burden of Disease Health Financing Collaborator Network ... Joseph L. Dieleman ... Muktar Ahmed ... et al

    Definition, diagnosis and treatment of oligometastatic oesophagogastric cancer: A Delphi consensus study in Europe.

    Get PDF
    Local treatment improves the outcomes for oligometastatic disease (OMD, i.e. an intermediate state between locoregional and widespread disseminated disease). However, consensus about the definition, diagnosis and treatment of oligometastatic oesophagogastric cancer is lacking. The aim of this study was to develop a multidisciplinary European consensus statement on the definition, diagnosis and treatment of oligometastatic oesophagogastric cancer. In total, 65 specialists in the multidisciplinary treatment for oesophagogastric cancer from 49 expert centres across 16 European countries were requested to participate in this Delphi study. The consensus finding process consisted of a starting meeting, 2 online Delphi questionnaire rounds and an online consensus meeting. Input for Delphi questionnaires consisted of (1) a systematic review on definitions of oligometastatic oesophagogastric cancer and (2) a discussion of real-life clinical cases by multidisciplinary teams. Experts were asked to score each statement on a 5-point Likert scale. The agreement was scored to be either absent/poor (<50%), fair (50%-75%) or consensus (≥75%). A total of 48 experts participated in the starting meeting, both Delphi rounds, and the consensus meeting (overall response rate: 71%). OMD was considered in patients with metastatic oesophagogastric cancer limited to 1 organ with ≤3 metastases or 1 extra-regional lymph node station (consensus). In addition, OMD was considered in patients without progression at restaging after systemic therapy (consensus). For patients with synchronous or metachronous OMD with a disease-free interval ≤2 years, systemic therapy followed by restaging to consider local treatment was considered as treatment (consensus). For metachronous OMD with a disease-free interval >2 years, either upfront local treatment or systemic treatment followed by restaging was considered as treatment (fair agreement). The OMEC project has resulted in a multidisciplinary European consensus statement for the definition, diagnosis and treatment of oligometastatic oesophagogastric adenocarcinoma and squamous cell cancer. This can be used to standardise inclusion criteria for future clinical trials

    Future and potential spending on health 2015-40: Development assistance for health, and government, prepaid private, and out-of-pocket health spending in 184 countries

    Get PDF
    Background: The amount of resources, particularly prepaid resources, available for health can affect access to health care and health outcomes. Although health spending tends to increase with economic development, tremendous variation exists among health financing systems. Estimates of future spending can be beneficial for policy makers and planners, and can identify financing gaps. In this study, we estimate future gross domestic product (GDP), all-sector government spending, and health spending disaggregated by source, and we compare expected future spending to potential future spending. Methods: We extracted GDP, government spending in 184 countries from 1980-2015, and health spend data from 1995-2014. We used a series of ensemble models to estimate future GDP, all-sector government spending, development assistance for health, and government, out-of-pocket, and prepaid private health spending through 2040. We used frontier analyses to identify patterns exhibited by the countries that dedicate the most funding to health, and used these frontiers to estimate potential health spending for each low-income or middle-income country. All estimates are inflation and purchasing power adjusted. Findings: We estimated that global spending on health will increase from US9.21trillionin2014to9.21 trillion in 2014 to 24.24 trillion (uncertainty interval [UI] 20.47-29.72) in 2040. We expect per capita health spending to increase fastest in upper-middle-income countries, at 5.3% (UI 4.1-6.8) per year. This growth is driven by continued growth in GDP, government spending, and government health spending. Lower-middle income countries are expected to grow at 4.2% (3.8-4.9). High-income countries are expected to grow at 2.1% (UI 1.8-2.4) and low-income countries are expected to grow at 1.8% (1.0-2.8). Despite this growth, health spending per capita in low-income countries is expected to remain low, at 154(UI133181)percapitain2030and154 (UI 133-181) per capita in 2030 and 195 (157-258) per capita in 2040. Increases in national health spending to reach the level of the countries who spend the most on health, relative to their level of economic development, would mean $321 (157-258) per capita was available for health in 2040 in low-income countries. Interpretation: Health spending is associated with economic development but past trends and relationships suggest that spending will remain variable, and low in some low-resource settings. Policy change could lead to increased health spending, although for the poorest countries external support might remain essential
    corecore