28,061 research outputs found
New Models for X-Ray Synchrotron Radiation from the Remnant of Supernova 1006 AD
Galactic cosmic rays up to energies of around 10^15 eV are assumed to
originate in supernova remnants (SNRs). The shock wave of a young SNR like SN
1006 AD can accelerate electrons to energies greater than 1 TeV, where they can
produce synchrotron radiation in the X-ray band. A new model (SRESC) designed
to model synchrotron X-rays from Type Ia supernovae can constrain values for
the magnetic-field strength and electron scattering properties, with
implications for the acceleration of the unseen ions which dominate the
cosmic-ray energetics. New observations by ASCA, ROSAT, and RXTE have provided
enormously improved data, which now extend to higher X-ray energies. These data
allow much firmer constraints. We will describe model fits to these new data on
SN 1006 AD, emphasizing the physical constraints that can be placed on SNRs and
on the cosmic-ray acceleration process.Comment: 10 pages, 2 figures. to appear in "Cosmic Explosions", proceeding of
the 10th Annual October Astrophysics Conference (ed. S.S. Holt and W. W.
Zhang) LaTex aipproc.st
Thermoradiation inactivation of naturally occurring organisms in soil
Samples of soil collected from Kennedy Space Center near spacecraft assembly facilities were found to contain microorganisms very resistant to conventional sterilization techniques. The inactivation behavior of the naturally occurring spores in soil was investigated using dry heat and ionizing radiation, first separately, then in combination. Dry heat inactivation rates of spores were determined for 105 and 125 C. Radiation inactivation rates were determined for dose rates of 660 and 76 krad/hr at 25 C. Simultaneous combinations of heat and radiation were then investigated at 105, 110, 115, 120, and 125 C. Combined treatment was found to be highly synergistic requiring greatly reduced radiation doses to accomplish sterilization
1E 1547.0-5408: a radio-emitting magnetar with a rotation period of 2 seconds
The variable X-ray source 1E 1547.0-5408 was identified by Gelfand & Gaensler
(2007) as a likely magnetar in G327.24-0.13, an apparent supernova remnant. No
X-ray pulsations have been detected from it. Using the Parkes radio telescope,
we discovered pulsations with period P = 2.069 s. Using the Australia Telescope
Compact Array, we localized these to 1E 1547.0-5408. We measure dP/dt =
(2.318+-0.005)e-11, which for a magnetic dipole rotating in vacuo gives a
surface field strength of 2.2e14 G, a characteristic age of 1.4 kyr, and a
spin-down luminosity of 1.0e35 ergs/s. Together with its X-ray characteristics,
these rotational parameters of 1E 1547.0-5408 prove that it is a magnetar, only
the second known to emit radio waves. The distance is ~9 kpc, derived from the
dispersion measure of 830 pc/cc. The pulse profile at a frequency of 1.4 GHz is
extremely broad and asymmetric due to multipath propagation in the ISM, as a
result of which only approximately 75% of the total flux at 1.4 GHz is pulsed.
At higher frequencies the profile is more symmetric and has FWHM = 0.12P.
Unlike in normal radio pulsars, but in common with the other known
radio-emitting magnetar, XTE J1810-197, the spectrum over 1.4-6.6 GHz is flat
or rising, and we observe large, sudden changes in the pulse shape. In a
contemporaneous Swift X-ray observation, 1E 1547.0-5408 was detected with
record high flux, f_X(1-8 keV) ~ 5e-12 ergs/cm^2/s, 16 times the historic
minimum. The pulsar was undetected in archival radio observations from 1998,
implying a flux < 0.2 times the present level. Together with the transient
behavior of XTE J1810-197, these results suggest that radio emission is
triggered by X-ray outbursts of usually quiescent magnetars.Comment: Accepted for publication in ApJ Letter
A Search for Ionized Gas in the Draco and Ursa Minor Dwarf Spheroidal Galaxies
The Wisconsin H Alpha Mapper has been used to set the first deep upper limits
on the intensity of diffuse H alpha emission from warm ionized gas in the Local
Group dwarf spheroidal galaxies (dSphs) Draco and Ursa Minor. Assuming a
velocity dispersion of 15 km/s for the ionized gas, we set limits for the H
alpha intensity of less or equal to 0.024 Rayleighs and less or equal to 0.021
Rayleighs for the Draco and Ursa Minor dSphs, respectively, averaged over our 1
degree circular beam. Adopting a simple model for the ionized interstellar
medium, these limits translate to upper bounds on the mass of ionized gas of
approximately less than 10% of the stellar mass, or approximately 10 times the
upper limits for the mass of neutral hydrogen. Note that the Draco and Ursa
Minor dSphs could contain substantial amounts of interstellar gas, equivalent
to all of the gas injected by dying stars since the end of their main star
forming episodes more than 8 Gyr in the past, without violating these limits on
the mass of ionized gas.Comment: 10 pages, 2 figures, AASTeX two-column format. Accepted for
publication in The Astrophysical Journa
Electron tunnel sensor technology
Researchers designed and constructed a novel electron tunnel sensor which takes advantage of the mechanical properties of micro-machined silicon. For the first time, electrostatic forces are used to control the tunnel electrode separation, thereby avoiding the thermal drift and noise problems associated with piezoelectric actuators. The entire structure is composed of micro-machined silicon single crystals, including a folded cantilever spring and a tip. The application of this sensor to the development of a sensitive accelerometer is described
Supernova Ejecta in the Youngest Galactic Supernova Remnant G1.9+0.3
G1.9+0.3 is the youngest known Galactic supernova remnant (SNR), with an
estimated supernova (SN) explosion date of about 1900, and most likely located
near the Galactic Center. Only the outermost ejecta layers with free-expansion
velocities larger than about 18,000 km/s have been shocked so far in this
dynamically young, likely Type Ia SNR. A long (980 ks) Chandra observation in
2011 allowed spatially-resolved spectroscopy of heavy-element ejecta. We
denoised Chandra data with the spatio-spectral method of Krishnamurthy et al.,
and used a wavelet-based technique to spatially localize thermal emission
produced by intermediate-mass elements (IMEs: Si and S) and iron. The spatial
distribution of both IMEs and Fe is extremely asymmetric, with the strongest
ejecta emission in the northern rim. Fe Kalpha emission is particularly
prominent there, and fits with thermal models indicate strongly oversolar Fe
abundances. In a localized, outlying region in the northern rim, IMEs are less
abundant than Fe, indicating that undiluted Fe-group elements (including 56Ni)
with velocities larger than 18,000 km/s were ejected by this SN. But in the
inner west rim, we find Si- and S-rich ejecta without any traces of Fe, so
high-velocity products of O-burning were also ejected. G1.9+0.3 appears similar
to energetic Type Ia SNe such as SN 2010jn where iron-group elements at such
high free-expansion velocities have been recently detected. The pronounced
asymmetry in the ejecta distribution and abundance inhomogeneities are best
explained by a strongly asymmetric SN explosion, similar to those produced in
some recent 3D delayed-detonation Type Ia models.Comment: 6 pages, 3 figures, submitted to ApJ Letter
- …