939 research outputs found

    HOW AGN JETS HEAT the INTRACLUSTER MEDIUM - INSIGHTS from HYDRODYNAMIC SIMULATIONS

    Get PDF
    © 2016. The American Astronomical Society. All rights reserved. Feedback from active galactic nuclei (AGNs) is believed to prevent catastrophic cooling in galaxy clusters. However, how the feedback energy is transformed into heat, and how the AGN jets heat the intracluster medium (ICM) isotropically, still remain elusive. In this work, we gain insights into the relative importance of different heating mechanisms using three-dimensional hydrodynamic simulations including cold gas accretion and momentum-driven jet feedback, which are the most successful models to date in terms of reproducing the properties of cool cores. We find that there is net heating within two "jet cones" (within ∼30° from the axis of jet precession) where the ICM gains entropy by shock heating and mixing with the hot thermal gas within bubbles. Outside the jet cones, the ambient gas is heated by weak shocks, but not enough to overcome radiative cooling, therefore, forming a "reduced" cooling flow. Consequently, the cluster core is in a process of "gentle circulation" over billions of years. Within the jet cones, there is significant adiabatic cooling as the gas is uplifted by buoyantly rising bubbles; outside the cones, energy is supplied by the inflow of already-heated gas from the jet cones as well as adiabatic compression as the gas moves toward the center. In other words, the fluid dynamics self-adjusts such that it compensates and transports the heat provided by the AGN, and hence no fine-tuning of the heating profile of any process is necessary. Throughout the cluster evolution, turbulent energy is only at the percent level compared to gas thermal energy, and thus turbulent heating is not the main source of heating in our simulation

    Bacterial adherence to mucosal epithelium in the upper airways has less significance than believed

    Get PDF
    BACKGROUND: Bacterial adherence to the upper airway epithelium is considered to be an important phenomenon in the pathogenesis of infections. However, the evidence for the hypothesis that bacterial adherence to mucosal epithelial cells has significance for pathogenesis of mucosal infections is based on studies using indirect techniques. We could find no biopsy studies with direct ocular observations of significant numbers of bacteria adhering to upper airway mucosal epithelial cells either in health or during disease. RESULTS: We studied specimens from healthy and infected tonsillar epithelium and specimens from the soft palate epithelium obtained by surgery. The specimens were examined by TEM. In the vast majority of specimens, we found no bacteria adhering to the epithelial cells in the mucosal line regardless of whether the patient was infected or not. Bacteria adhering to shed epithelial cells were seen in higher numbers. Furthermore, as bacteria are small compared to epithelial cells, we calculated the risk of overlooking every adhered bacteria in a section if bacterial adherence was such a significant phenomenon as earlier suggested. We found this risk to be very small. CONCLUSION: We conclude that bacterial adherence to mucosal surface epithelial cells is not a significant phenomenon, either in healthy mucosa in the upper airways or during infection. This is also in line with our earlier results, where we have shown that the site for the infectious process in pharyngotonsillitis is in the secretion on the tonsillar mucosal surface

    In vivo pharmacological evaluations of novel olanzapine analogues in rats: a potential new avenue for the treatment of schizophrenia

    Get PDF
    Olanzapine (Olz) is one of the most effective antipsychotic drugs commonly used for treating schizophrenia. Unfortunately, Olz administration is associated with severe weight gain and metabolic disturbances. Both patients and clinicians are highly interested in the development of new antipsychotics which are as effective as atypical antipsychotics but which have a lower propensity to induce metabolic side effects. In the present study, we examined two new derivatives of Olz; OlzEt (2-ethyl-4-(4′-methylpiperazin-1′-yl)-10Hbenzo[b]thieno[2,3-e][1,4]diazepine), and OlzHomo (2-ethyl-4-(4′-methyl-1′,4′-diazepan-1′-yl)-10H-benzo[b]thieno[2,3-e] [1,4]diazepine), for their tendency to induce weight gain in rats. Weight gain and metabolic changes were measured in female Sprague Dawley rats. Animals were treated orally with Olz, OlzEt, OlzHomo (3 or 6 mg/kg/day), or vehicle (n = 8), three times daily at eight-hour intervals for 5 weeks. Furthermore, a phencyclidine (PCP)-treated rat model was used to examine the prevention of PCP-induced hyperlocomotor activity relevant for schizophrenia therapy. Male Sprague Dawley rats were pre-treated with a single dose (3 mg/kg/day) of Olz, OlzEt, OlzHomo, or vehicle (n = 12), for 2 weeks. Locomotor activity was recorded following a subcutaneous injection with either saline or PCP (10 mg/kg). Olz was found to induce weight gain, hyperphagia, visceral fat accumulation, and metabolic changes associated with reduced histamatergic H1 receptor density in the hypothalamus of treated rats. In contrast, OlzEt and OlzHomo presented promising antipsychotic effects, which did not induce weight gain or fat deposition in the treated animals. Behavioural analysis showed OlzEt to attenuate PCP-induced hyperactivity to a level similar to that of Olz; however, OlzHomo showed a lower propensity to inhibit these stereotyped behaviours. Our data suggest that the therapeutic effectiveness of OlzHomo may be delivered at a higher dose than that of Olz and OlzEt. Overall, OlzEt and OlzHomo may offer a better pharmacological profile than Olz for treating patients with schizophrenia. Clinical trials are needed to test this hypothesis

    Cell Recovery in Bronchoalveolar Lavage Fluid in Smokers Is Dependent on Cumulative Smoking History

    Get PDF
    Background: Smoking is a risk factor for various lung diseases in which BAL may be used as a part of a clinical investigation. Interpretation of BAL fluid cellularity is however difficult due to high variability, in particular among smokers. In this study we aimed to evaluate the effect of smoking on BAL cellular components in asymptomatic smokers. The effects of smoking cessation, age and gender were also investigated in groups of smokers and exsmokers. Methods: We performed a retrospective review of BAL findings, to our knowledge the largest single center investigation, in our department from 1999 to 2009. One hundred thirty two current smokers (48 males and 84 females) and 44 ex-smokers (16 males and 28 females) were included. A group of 295 (132 males and 163 females) never-smokers served as reference. Result: The median [5–95 pctl] total number of cells and cell concentration in current smokers were 63.4 [28.6–132.1]610 6 and 382.1 [189.7–864.3]610 6 /L respectively and correlated positively to the cumulative smoking history. Macrophages were the predominant cell type (96.7 % [90.4–99.0]) followed by lymphocytes (2 % [0.8–7.7]) and neutrophils (0.6 % [0–2.9]). The concentration of all inflammatory cells was increased in smokers compared to never smokers and ex-smokers. BAL fluid recovery was negatively correlated with age (p,0.001). Smoking men had a lower BAL fluid recovery than smoking women. Conclusion: Smoking has a profound effect on BAL fluid cellularity, which is dependent on smoking history. Our results performed on a large group of current smokers and ex-smokers in a well standardized way, can contribute to bette

    Pulmonary fibrosis induced by H5N1 viral infection in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inflammatory process results in lung injury that may lead to pulmonary fibrosis (PF). Here, we described PF in mice infected with H5N1 virus.</p> <p>Methods</p> <p>Eight-week-old BALB/c mice were inoculated intranasally with 1 × 10<sup>1 </sup>MID<sub>50 </sub>of A/Chicken/Hebei/108/2002(H5N1) viruses. Lung injury/fibrosis was evaluated by observation of hydroxyproline concentrations, lung indexes, and histopathology on days 7, 14, and 30 postinoculation.</p> <p>Results</p> <p>H5N1-inoculated mice presented two stages of pulmonary disease over a 30-d period after infection. At acute stage, infected-mice showed typical diffuse pneumonia with inflammatory cellular infiltration, alveolar and interstitial edema and hemorrhage on day 7 postinoculation. At restoration stage, most infected-mice developed PF of different severities on day 30 postinoculation, and 18% of the survived mice underwent severe interstitial and intra-alveolar fibrosis with thickened alveolar walls, collapsed alveoli and large fibrotic areas. The dramatically elevated hydroxyproline levels in H5N1-infected mice showed deposition of collagen in lungs, and confirmed fibrosis of lungs. The dry lung-to-body weight ratio was significantly increased in infected group, which might be associated with the formation of PF in H5N1-infected mice.</p> <p>Conclusion</p> <p>Our findings show that H5N1-infected mice develop the typical PF during restoration period, which will contribute to the investigation of fibrogenesis and potential therapeutic intervention in human H5N1 disease.</p

    Hypersensitivity pneumonitis: an overlooked cause of cough and dyspnea.

    Get PDF
    Hypersensitivity pneumonitis (HP) is an immune-mediated pulmonary disorder involving inflammation of the lung interstitium, terminal bronchioles, and alveoli caused by the immune response to the inhalation of an offending environmental airborne agent. It can manifest as exertional dyspnea, fatigue, weight loss, and progressive respiratory failure if left untreated. Because of its protean features, it can be misdiagnosed as other common obstructive lung conditions such as asthma. If triggers are not avoided, it can progress to irreversible pulmonary fibrosis. In this article, we present the case of a 51-year-old male who presented to our hospital with recurrent bouts of dyspnea and cough, initially diagnosed as an asthma exacerbation. He received a final diagnosis of HP after investigation of his workplace revealed airborne spores and surface molds from multiple fungal species, serology revealed eosinophilia, and computed tomography showed bronchiectasis. Avoidance of occupational exposure resulted in significant improvement of his respiratory symptoms after two months

    Massive stars as thermonuclear reactors and their explosions following core collapse

    Full text link
    Nuclear reactions transform atomic nuclei inside stars. This is the process of stellar nucleosynthesis. The basic concepts of determining nuclear reaction rates inside stars are reviewed. How stars manage to burn their fuel so slowly most of the time are also considered. Stellar thermonuclear reactions involving protons in hydrostatic burning are discussed first. Then I discuss triple alpha reactions in the helium burning stage. Carbon and oxygen survive in red giant stars because of the nuclear structure of oxygen and neon. Further nuclear burning of carbon, neon, oxygen and silicon in quiescent conditions are discussed next. In the subsequent core-collapse phase, neutronization due to electron capture from the top of the Fermi sea in a degenerate core takes place. The expected signal of neutrinos from a nearby supernova is calculated. The supernova often explodes inside a dense circumstellar medium, which is established due to the progenitor star losing its outermost envelope in a stellar wind or mass transfer in a binary system. The nature of the circumstellar medium and the ejecta of the supernova and their dynamics are revealed by observations in the optical, IR, radio, and X-ray bands, and I discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry" Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure

    EM703 improves bleomycin-induced pulmonary fibrosis in mice by the inhibition of TGF-β signaling in lung fibroblasts

    Get PDF
    BACKGROUND: Fourteen-membered ring macrolides have been effective in reducing chronic airway inflammation and also preventing lung injury and fibrosis in bleomycin-challenged mice via anti-inflammatory effects. EM703 is a new derivative of erythromycin (EM) without the bactericidal effects. We investigated the anti-inflammatory and antifibrotic effects of EM703 in an experimental model of bleomycin-induced lung injury and subsequent fibrosis in mice. METHODS: Seven-week-old male ICR mice were used. All experiments used eight mice/group, unless otherwise noted in the figure legends. Bleomycin was administered intravenously to the mice on day 0. EM703 was orally administered daily to mice. All groups were examined for cell populations in the bronchoalveolar lavage (BAL) fluid and for induction of messenger RNA (mRNA) of Smad3 and Smad4 in the lung tissues by reverse transcriptase (RT)-polymerase chainreaction (PCR) on day 7. Fibroblastic foci were assessed histologically, and the hydroxyproline content was chemically determined in the lung tissues on day 28. We performed assay of proliferation and soluble collagen production, and examined the induction of mRNA of Smad3 and Smad4 by RT-PCR in murine lung fibroblast cell line MLg2908. We also examined Smad3, Smad4 and phosphorylated Smad2/3 (p-Smad2/3) protein assay by western blotting in MLg2908. RESULTS: Bleomycin-induced lung fibrosis, and the infiltration of macrophages and neutrophils into the airspace were inhibited by EM703. The expression of Smad3 and Smad4 mRNA was clearly attenuated by bleomycin, but was recovered by EM703. EM703 also inhibited fibroblast proliferation and the collagen production in lung fibroblasts induced by Transforming growth factor-beta (TGF-β). The expression of Smad3 and Smad4 mRNA in murine lung fibroblasts disappeared due to TGF-β, but was recovered by EM703. EM703 inhibited the expression of p-Smad2/3 and Smad4 protein in murine lung fibroblasts induced by TGF-β. CONCLUSION: These findings suggest that EM703 improves bleomycin-induced pulmonary fibrosis in mice by actions of anti-inflammation and regulation of TGF-β signaling in lung fibroblasts
    • …
    corecore