26,356 research outputs found
CSM programs SM RCS propellant quantity gaging systems program
Computer program calculates actual and useable remaining propellant quantities as required in positive expulsion rocket engine propellant feed system. Program establishes relationship between helium system pressures and temperatures and propellant weight remaining in tanks. Program is written in FORTRAN 4 for IBM-360 computer
WHAM Observations of H-Alpha, [S II], and [N II] toward the Orion and Perseus Arms: Probing the Physical Conditions of the Warm Ionized Medium
A large portion of the Galaxy (l = 123 deg to 164 deg, b = -6 deg to -35
deg), which samples regions of the Local (Orion) spiral arm and the more
distant Perseus arm, has been mapped with the Wisconsin H-Alpha Mapper (WHAM)
in the H-Alpha, [S II] 6716, and [N II] 6583 lines. Several trends noticed in
emission-line investigations of diffuse gas in other galaxies are confirmed in
the Milky Way and extended to much fainter emission. We find that the [S
II]/H-Alpha and [N II]/H-Alpha ratios increase as absolute H-Alpha intensities
decrease. For the more distant Perseus arm emission, the increase in these
ratios is a strong function of Galactic latitude and thus, of height above the
Galactic plane. The [S II]/[N II] ratio is relatively independent of H-Alpha
intensity. Scatter in this ratio appears to be physically significant, and maps
of it suggest regions with similar ratios are spatially correlated. The Perseus
arm [S II]/[N II] ratio is systematically lower than Local emission by 10%-20%.
With [S II]/[N II] fairly constant over a large range of H-Alpha intensities,
the increase of [S II]/H-Alpha and [N II]/H-Alpha with |z| seems to reflect an
increase in temperature. Such an interpretation allows us to estimate the
temperature and ionization conditions in our large sample of observations. We
find that WIM temperatures range from 6,000 K to 9,000 K with temperature
increasing from bright to faint H-Alpha emission (low to high [S II]/H-Alpha
and [N II]/H-Alpha) respectively. Changes in [S II]/[N II] appear to reflect
changes in the local ionization conditions (e.g. the S+/S++ ratio). We also
measure the electron scale height in the Perseus arm to be 1.0+/-0.1 kpc,
confirming earlier, less accurate determinations.Comment: 28 pages, 10 figures. Figures 2 and 3 are full color--GIFs provided
here, original PS figures at link below. Accepted for publication in ApJ.
More information about the WHAM project can be found at
http://www.astro.wisc.edu/wham/ . REVISION: Figure 6, bottom panel now
contains the proper points. No other changes have been mad
An Assessment of Potential Detectors to Monitor the Man-made Orbital Debris Environment
Observations using NORAD radar showed that man made debris exceeds the natural environment for large objects. For short times (a few days to a few weeks) after solid rocket motor (SRM) firings in LEO, man made debris in the microparticle size range also appears to exceed the meteoroid environment. The properties of the debris population between these size regimes is currently unknown as there has been no detector system able to perform the required observations. The alternatives for obtaining data on this currently unobserved segment of the population are assessed
Iron fluorescence from within the innermost stable orbit of black hole accretion disks
The fluorescent iron Ka line is a powerful observational probe of the inner
regions of black holes accretion disks. Previous studies have assumed that only
material outside the radius of marginal stability can contribute to the
observed line emission. Here, we show that fluorescence by material inside the
radius of marginal stability, which is in the process of spiralling towards the
event horizon, can have a observable influence on the iron line profile and
equivalent width. For concreteness, we consider the case of a geometrically
thin accretion disk, around a Schwarzschild black hole, in which fluorescence
is excited by an X-ray source placed at some height above the disk and on the
axis of the disk. Fully relativistic line profiles are presented for various
source heights and efficiencies. It is found that the extra line flux generally
emerges in the extreme red wing of the iron line, due to the large
gravitational redshift experienced by photons from the region within the radius
of marginal stability. We apply our models to the variable iron line seen in
the ASCA spectrum of the Seyfert nucleus MCG-6-30-15. It is found that the
change in the line profile, equivalent width, and continuum normalization, can
be well explained as being due to a change in the height of the source above
the disk. We discuss the implications of these results for distinguishing
rapidly-rotating black holes from slowly rotating holes using iron line
diagnostics.Comment: 20 pages, LaTeX. Accepted for publication in Astrophysical Journal.
Figures 3 to 7 replaced with corrected versions (previous figures affected by
calculational error). Some changes in the best fitting parameter
The Surveyor 5, 6, and 7 Flight Paths and Their Determination from Tracking Data
Surveyor 5, 6, and 7 flight paths and tracking data for space station location
Ionization, Kinematics, and Extent of the Diffuse Ionized Gas Halo of NGC 5775
We present key results from deep spectra of the Diffuse Ionized Gas (DIG)
halo of the edge-on galaxy NGC 5775. [NII]6583 has been detected up to about
z=13 kpc above the plane in one of two vertically oriented long slits -- making
this the spiral galaxy with the greatest spectroscopically detected halo extent
in emission. Key diagnostic line ratios have been measured up to about z=8 kpc,
allowing the source of ionization and physical state to be probed. Ionization
by a dilute radiation field from massive stars in the disk can explain some of
the line ratio behavior, but departures from this picture are clearly
indicated, most strongly by the rise of [OIII]/Halpha with z. Velocities of the
gas in both slits approach the systemic velocity of the galaxy at several kpc
above the plane. We interpret this trend as a decrease in rotation velocity
with z, with essentially no rotation at heights of several kpc. Such a trend
was observed in the edge-on galaxy NGC 891, but here much more dramatically.
This falloff is presumably due to the gravitational potential changing with z,
but will also depend on the hydrodynamic nature of the disk-halo cycling of gas
and projection effects. More detailed modeling of the ionization and kinematics
of this and other edge-ons will be presented in future papers.Comment: figures 1, 2a-d and 3 included. ApJ Letters, in pres
- …