2 research outputs found

    Below-ground ectomycorrhizal community in natural Tuber melanosporum truffle grounds and dynamics after canopy opening

    Full text link
    [EN] The ectomycorrhizal fungus Tuber melanosporum fruits in association with Quercus in natural forests of Spain. Some of these stands are managed to keep an open canopy and meet the habitat requirements of the fungus. However, there are few quantitative studies analysing in these forests the relationship between soil environment and T. melanosporum. Eight forest stands which produce T. melanosporum have been monitored for 6 years in order to characterise the below-ground ectomycorrhizal community and to assess its temporal dynamics after experimental canopy opening. The brûlé, the ground where T. melanosporum fruits, shows a distinct ectomycorrhizal community, characterised by lower density of active ectomycorrhizal tips, lower morphotype richness per soil volume, higher abundance of T. melanosporum and lower abundance of Cenococcum geophilum than soil closest to the trunk of the host Quercus ilex. Opening the canopy has not stimulated an increase in T. melanosporum, suggesting that a shift in the soil environment alone will not trigger the formation of new truffières in the short term. The dry climate of these truffières may be a factor as T. melanosporum abundance appears to be sensitive to annual weather conditions. © 2011 Springer-Verlag.We gratefully acknowledge the support of the Conselleria de Medi Ambient (Generalitat Valenciana) and VAERSA. Comments from anonymous reviewers and editorial suggestions from Randy Molina greatly helped in improving the manuscript. The Fundacion CEAM is partly supported by Generalitat Valenciana, Fundacion Bancaja and the projects GRACCIE (Consolider-Ingenio 2010) and FEEDBACKS (Prometeo-Generalitat Valenciana).García Barreda, S.; Reyna Domenech, S. (2012). Below-ground ectomycorrhizal community in natural Tuber melanosporum truffle grounds and dynamics after canopy opening. Mycorrhiza. 22(5):361-369. doi:10.1007/s00572-011-0410-2S361369225Agerer R (1987–2002) Colour atlas of ectomycorrhizae 1st-12th del. Eihorn-Verlag, BerlinÁgueda B, Fernández-Toirán LM, De Miguel AM, Martínez-Peña F (2010) Ectomycorrhizal status of a mature productive black truffle plantation. For Syst 19:89–97Barry-Etienne D, Ricard JM, Diente S, Moundy PJ, Chandioux O, Fiorese D, Jaillard B, Serre F, Jourdan C (2008) Distribution of Tuber melanosporum mycorrhizas on rootstocks of holm-oaks (Quercus ilex) in production. 3º Congresso Internazionale di Spoleto sul Tartufo, Spoleto, ItalyBonet JA, Fischer CR, Colinas C (2001) Evolución mensual en campo de las ectomicorrizas de Tuber melanosporum Vitt. inoculadas en plantas de Quercus ilex. In: Actas del III Congreso Forestal Español. Junta de Andalucía. Available in http://www.congresoforestal.es . Accessed 3 June 2011Claus A, George E (2005) Effect of stand age on fine-root biomass and biomass distribution in three European forest chronosequences. Can J For Res 35:1617–1625. doi: 10.1139/X05-079Courty P-E, Franc A, Pierrat J-C, Garbaye J (2008) Temporal changes in the ectomycorrhizal community in two soil horizons of a temperate oak forest. Appl Environ Microbiol 74(8):5792–5801. doi: 10.1128/AEM.01592-08De Román M (2003) Las ectomicorrizas de Quercus ilex subsp. ballota y su dinámica post-incendio en una zona potencialmente trufera. Dissertation, Universidad de NavarraDeschaseaux A, Ponge J-F (2001) Changes in the composition of humus profiles near the trunk base of an oak tree (Quercus petraea (Mattus.) Liebl). Eur J Soil Biol 37:9–16. doi: 10.1016/S1164-5563(01)01064-0Dickie IA, Reich PB (2005) Ectomycorrhizal fungal communities at forest edges. J Ecol 93:244–255. doi: 10.1111/j.1365-2745.2005.00977.xGardes M, Bruns TD (1996) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above- and below-ground views. Can J Bot 74:1572–1583. doi: 10.1139/b96-190Granetti B (2005) Miglioramento e rinnovamento delle tartufaie. In: Granetti B, De Angelis A, Materozzi G (eds) Umbria terra di tartufi. Regione Umbria-Gruppo Micologico Ternano, Terni, Italy, pp 207–208Gregori G, Elisei S, Pasquini L, Sacchi A, Spezi D (2001) Rigenerazione di una vecchia tartufaia coltivata di Tuber melanosporum Vitt. In: Courvoisier M, Olivier JM, Chevalier G (eds) Actes du V Congrès International Science et Culture de la Truffe. Fédération Française des Trufficulteurs, Aix-en-Provence, pp 400–405Hagerman SM, Sakakibara SM, Durall DM (2001) The potential for woody understory plants to provide refuge for ectomycorrhizal inoculum at an interior Douglas-fir forest after clear-cut logging. Can J For Res 31:711–721. doi: 10.1139/cjfr-31-4-711Hall IR, Yun W, Amicucci A (2003) Cultivation of edible ectomycorrhizal mushrooms. Trends Biotechnol 21:433–438. doi: 10.1016/S0167-7799(03)00204-XHall IR, Brown GT, Zambonelli A (2007) Taming the truffle: the history, lore and science of the ultimate mushroom. Timber, PortlandJones MD, Durall DM, Cairney JWG (2003a) Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol 157:399–422. doi: 10.1139/X09-072Jones RH, Mitchell RJ, Stevens GN, Pecot SD (2003b) Controls of fine root dynamics across a gradient of gap sizes in a pine woodland. Oecologia 134:132–143. doi: 10.1007/s00442-002-1098-yJones MD, Twieg BD, Durall DM, Berch SM (2008) Location relative to a retention patch affects the ECM fungal community more than patch size in the first season after timber harvesting on Vancouver Island, British Columbia. For Eco Manag 255:1342–1352. doi: 10.1016/j.foreco.2007.10.042Koide RT, Fernandez C, Petprakob K (2011) General principles in the community ecology of ectomycorrhizal fungi. Ann For Sci 68:45–55. doi: 10.1007/s1395-010-0006-6Lian C, Narimatsu M, Nara K, Hogetsu T (2006) Tricholoma matsutake in a natural Pinus densiflora forest: correspondence between above- and below-ground genets, in association with multiple host trees and alteration of existing ectomycorrhizal communities. New Phytol 171:825–836. doi: 10.1111/j.1469-8137.2006.01801.xLloret F, Peñuelas J, Ogaya R (2004) Establishment of co-existing Mediterranean tree species under a varying soil moisture regime. J Veg Sci 15:237–244. doi: 10.1111/j.1654-1103.2004.tb02258.xLuoma DL, Stockdale CA, Molina R, Eberhart JL (2006) The spatial influence of Pseudotsuga menziesii retention trees on ectomycorrhiza diversity. Can J For Res 36:2561–2573. doi: 10.1139/X06-143Martín-Benito D, Cherubini P, Del Río M, Cañellas I (2008) Growth response to climate and drought in Pinus nigra Arn. trees of different crown classes. Trees 22:363–373 doi: 10.1007/s00468-007-0191-6Mello A, Murat C, Bonfante P (2006) Truffles: much more than a prized and local fungal delicacy. FEMS Microbiol Lett 260:1–8. doi: 10.1111/j.1574-6968.2006.00252.xOlivier J-M, Savignac J-C, Sourzat P (2002) Truffe et trufficulture. Fanlac, Périgueux, FrancePargney JC, Chevalier G, Dupré C, Genet P, Jalade M (2001) Étude des stromas fongiques se développant sur les racines des plants mycorhizés par la truffe. In: Courvoisier M, Olivier JM, Chevalier G (eds) Actes du V Congrès International Science et Culture de la Truffe. Fédération Française des Trufficulteurs, Aix-en-Provence, France, pp 167–172Parsons WFJ, Miller SL, Knight DH (1994) Root-gap dynamics in a lodgepole pine forest: ectomycorrhizal and nonmycorrhizal fine root activity after experimental gap formation. Can J For Res 24:1531–1538. doi: 10.1139/x94-200Reyna S, Garcia S, Folch L, Pérez-Badia R, Galiana F, Rodríguez-Barreal JA, Domínguez-Núñez JA, Saiz de Omeñaca JA, Zazo J (2004) Selvicultura trufera en montes mediterráneos. In: Vallejo R, Alloza JA (eds) Avances en el estudio de la gestión del monte mediterránea. Fundación CEAM, Valencia, pp 523–546Ricard JM, Bergougnoux F, Callot R, Chevalier G, Olivier JM, Pargney JC, Sourzat P (2003) La truffe Guide technique de trufficulture. Ctifl, ParisSánchez-Durán S, De Miguel AM, Palazón C, González Armada B, Sáez R, Barriuso J (2009) Estado de micorrización de árboles truferos en función de su carácter productivo y su edad. In: Actas del 5º Congreso Forestal Español. Sociedad Española de Ciencias Forestales - Junta de Castilla y León. Available in http://www.congresoforestal.es . Accessed 3 June 2011Sourzat P, Génola L, Chaumeil F, Chédozeau N (2004) Questions d’ecologie appliquées à la trufficulture. Lycée Professionnel Agricole de Cahors-Le Montat, Le Montat, FranceSourzat P, Bouyssieres D, Brunet-Ruamps E, Chaumeil F, Dubiau J-M, Michels C, Génola L, Saenz W, Sanchez A (2008) La rénovation des anciennes plantations et la sylviculture truffière. Fédération Française des Trufficulteurs, Le Montat, FranceSplivallo R (2008) Biological significance of truffle secondary metabolites. In: Karlovsky P (ed) Secondary metabolites in soil ecology. Soil biology vol 14. Springer, BerlinTaylor AFS (2002) Fungal diversity in ectomycorrhizal communities: sampling effort and species detection. Plant Soil 244:19–28. doi: 10.1023/A:1020279815472Zavala MA (2004) Estructura, dinámica y modelos de ensamblaje del bosque mediterráneo: entre la necesidad y la contingencia. In: Valladares F (ed) Ecología del bosque mediterráneo en un mundo cambiante. Ministerio de Medio Ambiente, Madrid, pp 249–28

    Reforesting drylands under novel climates with extreme drought filters: The importance of trait-based species selection

    Full text link
    [EN] Having regard to the substantial world-scale forest restoration needs, the efforts must be done efficiently, which necessarily forces to consider the adaptation of new forests to the extremes arising from climate change. In this context, species selection strategies should enhance long-term functional resilience in the face of novel environmental scenarios. The use of plant functional traits for selecting species under climate change might be advantageous over more traditional taxon-based criteria as an adaptive forestry management strategy. In this work, we studied which functional traits (across species) have played a relevant role on field performance and fitness in a mull-species reforestation trial in a Mediterranean dryland affected by an extreme drought event. Different traits both from the individual plant and from the species were studied in seven species both at the short and the mid-term (10 years). The relative importance (RI) or contribution of the different traits to plantation performance was assessed through boosted regression tree models. The results showed that, under favorable climatic conditions, mean survival was above 70% and individual plant functional traits held up to 60% of importance on such value. The impact of species functional traits was low in this case (less than 18%) pointing out that all the species were performing within their niche at this point. However, after the driest year on record, the role of the latter on survival rose up to 53% of RI and survival sharply decreased to 33%, with some species showing negligible survival rate (< 10%). The dynamic response of stomata and xylem resistance to cavitation, together with roofing depth, were the main traits (species traits) identified in successful performance facing the extreme environmental factors. Thus, trait-oriented approach to select species represent a key tool in the implementation of new and successful forest restoration strategies to design resistant and resilient ecosystems adapted to the climate change challenges.This study is part of two research projects: "Comprehensive quality control of the reforestation works in the public forests of Cortes de Pallas, Valencia" signed between the Polytechnic University of Valencia (Re-ForeST) and the state-owned company TRAGSA, and "Monitoring and evaluation of the reforestation in the forest V-143 Muela de Cortes, in the municipality of Cortes de Pallas (Valencia), 10 years after its execution" (contract number CNMY18/0301/26), signed between the Polytechnic University of Valencia (Re-ForeST) and Valencia Regional Government (CMAAUV, Generalitat Valenciana) The authors are grateful to CYGSA staff (Maria Amparo Barber and Hector Cantos), Tragsa (Juan Ramon Torres), Vaersa (Pedro Lazaro) and Ana Isabel Aparicio (UPV) for their assistance in the fieldwork during the installation of the plot and early growth measurements. Projects CEHYRFO-MED (CGL2017-86839-C3-2-R), RESILIENT-FORESTS (LIFE17 CCA/ES/000063) and SilvAdapt.net (RED2018-102719-T) are acknowledged.Campo García, ADD.; Segura-Orenga, G.; Ceacero, CJ.; González-Sanchis, M.; Molina, AJ.; Reyna Domenech, S.; Hermoso, J. (2020). Reforesting drylands under novel climates with extreme drought filters: The importance of trait-based species selection. Forest Ecology and Management. 467:1-13. https://doi.org/10.1016/j.foreco.2020.118156S113467Abrantes, J., Campelo, F., García-González, I., & Nabais, C. (2012). Environmental control of vessel traits in Quercus ilex under Mediterranean climate: relating xylem anatomy to function. Trees, 27(3), 655-662. doi:10.1007/s00468-012-0820-6Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., … Cobb, N. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), 660-684. doi:10.1016/j.foreco.2009.09.001Al-Qaddi, N., Vessella, F., Stephan, J., Al-Eisawi, D., & Schirone, B. (2016). Current and future suitability areas of kermes oak (Quercus coccifera L.) in the Levant under climate change. Regional Environmental Change, 17(1), 143-156. doi:10.1007/s10113-016-0987-2Alrababah, M. A., Bani-Hani, M. G., Alhamad, M. N., & Bataineh, M. M. (2008). Boosting seedling survival and growth under semi-arid Mediterranean conditions: Selecting appropriate species under rainfed and wastewater irrigation. Journal of Arid Environments, 72(9), 1606-1612. doi:10.1016/j.jaridenv.2008.03.013Andivia, E., Zuccarini, P., Grau, B., de Herralde, F., Villar-Salvador, P., & Savé, R. (2018). Rooting big and deep rapidly: the ecological roots of pine species distribution in southern Europe. Trees, 33(1), 293-303. doi:10.1007/s00468-018-1777-xAUSSENAC, G., & VALETTE, J. C. (1982). Comportement hydrique estival de Cedrus atlantica Manetti, Quercus ilex L. et Quercus pubescens Willd. et de divers pins dans le Mont Ventoux. Annales des Sciences Forestières, 39(1), 41-62. doi:10.1051/forest:19820103Badía, D., Valero, R., Gracia, A., Martí, C., & Molina, F. (2007). Ten-Year Growth of Woody Species Planted in Reclaimed Mined Banks with Different Slopes. Arid Land Research and Management, 21(1), 67-79. doi:10.1080/15324980601094022Baquedano, F. J., & Castillo, F. J. (2006). Comparative ecophysiological effects of drought on seedlings of the Mediterranean water-saver Pinus halepensis and water-spenders Quercus coccifera and Quercus ilex. Trees, 20(6), 689-700. doi:10.1007/s00468-006-0084-0Bouche, P. S., Delzon, S., Choat, B., Badel, E., Brodribb, T. J., Burlett, R., … Jansen, S. (2015). Are needles of Pinus pinaster more vulnerable to xylem embolism than branches? New insights from X-ray computed tomography. Plant, Cell & Environment, 39(4), 860-870. doi:10.1111/pce.12680Brodribb, T. J., McAdam, S. A. M., Jordan, G. J., & Martins, S. C. V. (2014). Conifer species adapt to low-rainfall climates by following one of two divergent pathways. Proceedings of the National Academy of Sciences, 111(40), 14489-14493. doi:10.1073/pnas.1407930111Burdett, A. N. (1990). Physiological processes in plantation establishment and the development of specifications for forest planting stock. Canadian Journal of Forest Research, 20(4), 415-427. doi:10.1139/x90-059Carrión, J. S., & Fernández, S. (2009). The survival of the â natural potential vegetationâ concept (or the power of tradition). Journal of Biogeography, 36(12), 2202-2203. doi:10.1111/j.1365-2699.2009.02209.xCastell, C., Terradas, J., & Tenhunen, J. D. (1994). Water relations, gas exchange, and growth of resprouts and mature plant shoots of Arbutus unedo L. and Quercus ilex L. Oecologia, 98(2), 201-211. doi:10.1007/bf00341473Castillo, J. M., Casal, A. E., Luque, C. J., Luque, T., & Figueroa, M. E. (2002). Comparative Field Summer Stress of Three Tree Species Co-occurring in Mediterranean Coastal Dunes. Photosynthetica, 40(1), 49-56. doi:10.1023/a:1020133921204Ceacero, C. J., Díaz-Hernández, J. L., del Campo, A. D., & Navarro-Cerrillo, R. M. (2012). Interactions between soil gravel content and neighboring vegetation control management in oak seedling establishment success in Mediterranean environments. Forest Ecology and Management, 271, 10-18. doi:10.1016/j.foreco.2012.01.044Ceacero, C.J., Navarro-Cerrillo, R.M., Díaz-Hernández, J.L., del Campo, A., 2014. Is tree shelter protection an effective complement to weed competition management in improving the morpho- physiological response of holm oak planted seedlings ?. iForest 7(1), 289–299.Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R., … Zanne, A. E. (2012). Global convergence in the vulnerability of forests to drought. Nature, 491(7426), 752-755. doi:10.1038/nature11688Comas, L. H., Becker, S. R., Cruz, V. M. V., Byrne, P. F., & Dierig, D. A. (2013). Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00442Corcuera, L., Camarero, J. J., & Gil-Pelegrín, E. (2004). EFFECTS OF A SEVERE DROUGHT ON GROWTH AND WOOD ANATOMICAL PROPERTIES OF QUERCUS FAGINEA. IAWA Journal, 25(2), 185-204. doi:10.1163/22941932-90000360David-Schwartz, R., Paudel, I., Mizrachi, M., Delzon, S., Cochard, H., Lukyanov, V., … Cohen, S. (2016). Indirect Evidence for Genetic Differentiation in Vulnerability to Embolism in Pinus halepensis. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00768Campo, A. D., Navarro Cerrillo, R. M., Hermoso, J., & Ibáñez, A. J. (2007). Relationships between site and stock quality in Pinus halepensis Mill. reforestation on semiarid landscapes in eastern Spain. Annals of Forest Science, 64(7), 719-731. doi:10.1051/forest:2007052Del Campo, A. D., Navarro-Cerrillo, R. M., Hermoso, J., & Ibáñez, A. J. (2007). Relationship between root growth potential and field performance in Aleppo pine. Annals of Forest Science, 64(5), 541-548. doi:10.1051/forest:2007031del Campo, A.D., Segura G., 2009. Definición de protocolos para el control de calidad de planta en vivero y puesta en obra de la misma. Entrega GVA, Universidad Politécnica de Valencia. Valencia, 97 pp inédito.Del Campo, A. D., Navarro, R. M., & Ceacero, C. J. (2009). Seedling quality and field performance of commercial stocklots of containerized holm oak (Quercus ilex) in Mediterranean Spain: an approach for establishing a quality standard. New Forests, 39(1), 19-37. doi:10.1007/s11056-009-9152-9del Campo, A.D., Verdú, M., del Campo, María A. Prada Sáez. 2012. Fraxinus ornus L. In: Pemán J., Navarro- Cerrillo R.M., Nicolás J.L., Prada M.A., Serrada R. (Coords.). Handbook of Forest Seed and Seedling production and managament (vol I). In: Spanish (Producción y Manejo de Semillas y Plantas Forestales. Tomo I). Ed. Organismo Autónomo Parques Nacionales, Serie Forestal, Madrid, pp. 558–570.DELZON, S., DOUTHE, C., SALA, A., & COCHARD, H. (2010). Mechanism of water‐stress induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal capillary‐seeding. Plant, Cell & Environment, 33(12), 2101-2111. doi:10.1111/j.1365-3040.2010.02208.xDomínguez Núñez, J. A., Serrano, J. S., Barreal, J. A. R., & González, J. A. S. de O. (2006). The influence of mycorrhization with Tuber melanosporum in the afforestation of a Mediterranean site with Quercus ilex and Quercus faginea. Forest Ecology and Management, 231(1-3), 226-233. doi:10.1016/j.foreco.2006.05.052Dougherty, P.M., Duryea, M.L., 1991. Regeneration: an overview of past trends and basic steps needed to ensure future success. In: Duryea, M.L., Dougherty, P.M. (Eds), Forest Regeneration Manual. Forestry Sciences, 36. Springer, Dordrecht.Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77(4), 802-813. doi:10.1111/j.1365-2656.2008.01390.xElith, J., Leathwick, J., 2017. Boosted regression trees for ecological modelling. p. 22. http://cran.r‐project.org/web/packages/dismo/vignettes/brt.pdf (accessed 10.05.2019).FAO, 2010. Global Forest Resources Assessment 2010. Main report. FAO Forestry paper 163, Rome.Farris, E., Filibeck, G., Marignani, M., & Rosati, L. (2010). The power of potential natural vegetation (and of spatial-temporal scale): a response to Carrión & Fernández (2009). Journal of Biogeography, 37(11), 2211-2213. doi:10.1111/j.1365-2699.2010.02323.xFei, S., Desprez, J. M., Potter, K. M., Jo, I., Knott, J. A., & Oswalt, C. M. (2017). Divergence of species responses to climate change. Science Advances, 3(5). doi:10.1126/sciadv.1603055Fern�ndez, M., Gil, L., & Pardos, J. A. (2000). Effects of water supply on gas exchange in Pinus pinaster Ait. provenances during their first growing season. Annals of Forest Science, 57(1), 9-16. doi:10.1051/forest:2000107Froux, F., Huc, R., Ducrey, M., & Dreyer, E. (2002). Xylem hydraulic efficiency versus vulnerability in seedlings of four contrasting Mediterranean tree species (Cedrus atlantica, Cupressus sempervirens, Pinus halepensis and Pinus nigra). Annals of Forest Science, 59(4), 409-418. doi:10.1051/forest:2002015García de la Serrana, R., Vilagrosa, A., & Alloza, J. A. (2015). Pine mortality in southeast Spain after an extreme dry and warm year: interactions among drought stress, carbohydrates and bark beetle attack. Trees, 29(6), 1791-1804. doi:10.1007/s00468-015-1261-9Garcia-Forner, N., Biel, C., Savé, R., & Martínez-Vilalta, J. (2016). Isohydric species are not necessarily more carbon limited than anisohydric species during drought. Tree Physiology, 37(4), 441-455. doi:10.1093/treephys/tpw109Gil-Pelegrín, E., Saz, M.A., Cuadrat, J.M., Peguero-Pina, J.J., Sancho-Knapik, D., 2017. Oaks Under Mediterranean-Type Climates: Functional Response to Summer Aridity, in: Gil-Pelegrín E., Peguero-Pina J., Sancho-Knapik D. (Eds.), Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L. Tree Physiology 7, Springer, Cham.González-Rodríguez, V., Villar, R., Casado, R., Suárez-Bonnet, E., Quero, J. L., & Navarro-Cerrillo, R. M. (2011). Spatio-temporal heterogeneity effects on seedling growth and establishment in four Quercus species. Annals of Forest Science, 68(7), 1217-1232. doi:10.1007/s13595-011-0069-zGortan, E., Nardini, A., Gasco, A., & Salleo, S. (2009). The hydraulic conductance of Fraxinus ornus leaves is constrained by soil water availability and coordinated with gas exchange rates. Tree Physiology, 29(4), 529-539. doi:10.1093/treephys/tpn053Hällfors, M. H., Aikio, S., & Schulman, L. E. (2017). Quantifying the need and potential of assisted migration. Biological Conservation, 205, 34-41. doi:10.1016/j.biocon.2016.11.023Hermoso, J., 2017. Calidad de planta de Pinus halepensis Mill. en repoblaciones forestales en la provincia de Valencia. Definición y contraste de los estándares de calidad de planta. Tesis doctoral. Universidad de Córdoba, Córdoba.Hof, A. R., Dymond, C. C., & Mladenoff, D. J. (2017). Climate change mitigation through adaptation: the effectiveness of forest diversification by novel tree planting regimes. Ecosphere, 8(11), e01981. doi:10.1002/ecs2.1981IBM Corp. Released, 2013. IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.Jacobs, D. F., Oliet, J. A., Aronson, J., Bolte, A., Bullock, J. M., Donoso, P. J., … Weber, J. C. (2015). Restoring forests: What constitutes success in the twenty-first century? New Forests, 46(5-6), 601-614. doi:10.1007/s11056-015-9513-5Jandl, R., Spathelf, P., Bolte, A., & Prescott, C. E. (2019). Forest adaptation to climate change—is non-management an option? Annals of Forest Science, 76(2). doi:10.1007/s13595-019-0827-xJohnson, D. M., McCulloh, K. A., Woodruff, D. R., & Meinzer, F. C. (2012). Hydraulic safety margins and embolism reversal in stems and leaves: Why are conifers and angiosperms so different? Plant Science, 195, 48-53. doi:10.1016/j.plantsci.2012.06.010Lindner, M., Fitzgerald, J. B., Zimmermann, N. E., Reyer, C., Delzon, S., van der Maaten, E., … Hanewinkel, M. (2014). Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? Journal of Environmental Management, 146, 69-83. doi:10.1016/j.jenvman.2014.07.030Löf, M., Dey, D. C., Navarro, R. M., & Jacobs, D. F. (2012). Mechanical site preparation for forest restoration. New Forests, 43(5-6), 825-848. doi:10.1007/s11056-012-9332-xLöf, M., Madsen, P., Metslaid, M., Witzell, J., & Jacobs, D. F. (2019). Restoring forests: regeneration and ecosystem function for the future. New Forests, 50(2), 139-151. doi:10.1007/s11056-019-09713-0MAPA, 2019. Ministerio de Agricultura, Pesca y Alimentación. Anuario de Estadistica Forestal 2008. https://www.mapa.gob.es/es/desarrollo-rural/estadisticas/forestal_anuario_2008.aspx (accessed 26 June 2019).Martin-StPaul, N. K., Longepierre, D., Huc, R., Delzon, S., Burlett, R., Joffre, R., … Cochard, H. (2014). How reliable are methods to assess xylem vulnerability to cavitation? The issue of «open vessel» artifact in oaks. Tree Physiology, 34(8), 894-905. doi:10.1093/treephys/tpu059Martinez-Ferri, E., Balaguer, L., Valladares, F., Chico, J. M., & Manrique, E. (2000). Energy dissipation in drought-avoiding and drought-tolerant tree species at midday during the Mediterranean summer. Tree Physiology, 20(2), 131-138. doi:10.1093/treephys/20.2.131Martinez-Vilalta, J., Mangiron, M., Ogaya, R., Sauret, M., Serrano, L., Penuelas, J., & Pinol, J. (2003). Sap flow of three co-occurring Mediterranean woody species under varying atmospheric and soil water conditions. Tree Physiology, 23(11), 747-758. doi:10.1093/treephys/23.11.747Mediavilla, S., & Escudero, A. (2004). Stomatal responses to drought of mature trees and seedlings of two co-occurring Mediterranean oaks. Forest Ecology and Management, 187(2-3), 281-294. doi:10.1016/j.foreco.2003.07.006Melzack, R. N., Bravdo, B., & Riov, J. (1985). The effect of water stress on photosynthesis and related parameters in Pinus halepensis. Physiologia Plantarum, 64(3), 295-300. doi:10.1111/j.1399-3054.1985.tb03343.xMuzzi, E., & Fabbri, T. (2007). Revegetation of mineral clay soils: shrub and tree species compared. Land Degradation & Development, 18(4), 441-451. doi:10.1002/ldr.786Navarro Garnica, M. (Coord.), 1977. Técnicas de forestación 1975. Monografías 9, 2nd ed. Ministerio de Agricultura, ICONA, Madrid.NAVARROCERRILLO, R., ARIZA, D., GONZALEZ, L., DELCAMPO, A., ARJONA, M., & CEACERO, C. (2009). Legume living mulch for afforestation in agricultural land in Southern Spain. Soil and Tillage Research, 102(1), 38-44. doi:10.1016/j.still.2008.07.013Navarro-Cerrillo, R. M., Sánchez-Salguero, R., Rodriguez, C., Duque Lazo, J., Moreno-Rojas, J. M., Palacios-Rodriguez, G., & Camarero, J. J. (2019). Is thinning an alternative when trees could die in response to drought? The case of planted Pinus nigra and P. Sylvestris stands in southern Spain. Forest Ecology and Management, 433, 313-324. doi:10.1016/j.foreco.2018.11.006Oliveras, I., Martínez-Vilalta, J., Jimenez-Ortiz, T., José Lledó, M., Escarré, A., & Piñol, J. (2003). Plant Ecology, 169(1), 131-141. doi:10.1023/a:1026223516580Padilla, F. M., Ortega, R., Sánchez, J., & Pugnaire, F. I. (2009). Rethinking species selection for restoration of arid shrublands. Basic and Applied Ecology, 10(7), 640-647. doi:10.1016/j.baae.2009.03.003Padilla, F. M., Miranda, J. de D., Ortega, R., Hervás, M., Sánchez, J., & Pugnaire, F. I. (2011). Does shelter enhance early seedling survival in dry environments? A test with eight Mediterranean species. Applied Vegetation Science, 14(1), 31-39. doi:10.1111/j.1654-109x.2010.01094.xPalacios, G., Navarro Cerrillo, R. M., del Campo, A., & Toral, M. (2009). Site preparation, stock quality and planting date effect on early establishment of Holm oak (Quercus ilex L.) seedlings. Ecological Engineering, 35(1), 38-46. doi:10.1016/j.ecoleng.2008.09.006Pausas, J. G., Bladé, C., Valdecantos, A., Seva, J. P., Fuentes, D., Alloza, J. A., … Vallejo, R. (2004). Pines and oaks in the restoration of Mediterranean landscapes of Spain: New perspectives for an old practice – a review. Plant Ecology (formerly Vegetatio), 171(1/2), 209-220. doi:10.1023/b:vege.0000029381.63336.20Peguero-Pina, J. J., Sancho-Knapik, D., Barrón, E., Camarero, J. J., Vilagrosa, A., & Gil-Pelegrín, E. (2014). Morphological and physiological divergences within Quercus ilex support the existence of different ecotypes depending on climatic dryness. Annals of Botany, 114(2), 301-313. doi:10.1093/aob/mcu108Petruzzellis, F., Nardini, A., Savi, T., Tonet, V., Castello, M., & Bacaro, G. (2018). Less safety for more efficiency: water relations and hydraulics of the invasive treeAilanthus altissima(Mill.) Swingle compared with nativeFraxinus ornusL. Tree Physiology, 39(1), 76-87. doi:10.1093/treephys/tpy076PICON, C., GUEHL, J. M., & FERHI, A. (1996). Leaf gas exchange and carbon isotope composition responses to drought in a drought-avoiding (Pinus pinaster) and a drought-tolerant (Quercus petraea) species under present and elevated atmospheric CO2 concentrations. Plant, Cell and Environment, 19(2), 182-190. doi:10.1111/j.1365-3040.1996.tb00239.xPittermann, J., Choat, B., Jansen, S., Stuart, S. A., Lynn, L., & Dawson, T. E. (2010). The Relationships between Xylem Safety and Hydraulic Efficiency in the Cupressaceae: The Evolution of Pit Membrane Form and Function    . Plant Physiology, 153(4), 1919-1931. doi:10.1104/pp.110.158824R Core Team, 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (accessed 10.05.2019).Ridgeway, G., 2017. Generalized Boosted Regression Models. https://cran.r-project.org/web/packages/gbm/gbm.pdf (accessed 10.05.2019).Rivas-Martínez, S., 1987. Memoria del mapa de Series de Vegetación de España. I.C.O.N.A. Serie Técnica. Ministerio Agricultura, Pesca y Alimentación, Madrid.Robert, E.M.R., Mencuccini, M., Martínez-Vilalta, J., 2017. The anatomy and functioning of the xylem in oaks, in: Gil-Pelegrín E., Peguero-Pina J., Sancho-Knapik D. (Eds.), Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L. Tree Physiology 7, Springer, Cham.Ruiz de la Torre, J., 2006. Flora Mayor. Dirección General para la Biodiversidad, Ministerio de Medio Ambiente, Madrid.Ryser, P. (1996). The Importance of Tissue Density for Growth and Life Span of Leaves and Roots: A Comparison of Five Ecologically Contrasting Grasses. Functional Ecology, 10(6), 717. doi:10.2307/2390506Sansilvestri, R., Frascaria-Lacoste, N., & Fernández-Manjarrés, J. F. (2015). Reconstructing a deconstructed concept: Policy tools for implementing assisted migration for species and ecosystem management. Environmental Science & Policy, 51, 192-201. doi:10.1016/j.envsci.2015.04.005Stahl, U., Reu, B., & Wir
    corecore