5,139 research outputs found

    Steady base states for non-Newtonian granular hydrodynamics

    Full text link
    We study in this work steady laminar flows in a low density granular gas modelled as a system of identical smooth hard spheres that collide inelastically. The system is excited by shear and temperature sources at the boundaries, which consist of two infinite parallel walls. Thus, the geometry of the system is the same that yields the planar Fourier and Couette flows in standard gases. We show that it is possible to describe the steady granular flows in this system, even at large inelasticities, by means of a (non-Newtonian) hydrodynamic approach. All five types of Couette-Fourier granular flows are systematically described, identifying the different types of hydrodynamic profiles. Excellent agreement is found between our classification of flows and simulation results. Also, we obtain the corresponding non-linear transport coefficients by following three independent and complementary methods: (1) an analytical solution obtained from Grad's 13-moment method applied to the inelastic Boltzmann equation, (2) a numerical solution of the inelastic Boltzmann equation obtained by means of the direct simulation Monte Carlo method and (3) event-driven molecular dynamics simulations. We find that, while Grad's theory does not describe quantitatively well all transport coefficients, the three procedures yield the same general classification of planar Couette-Fourier flows for the granular gasComment: 33 pages, 11 figures; v2: improved version accepted for publication in J. Fluid Mec

    Impurity in a granular gas under nonlinear Couette flow

    Full text link
    We study in this work the transport properties of an impurity immersed in a granular gas under stationary nonlinear Couette flow. The starting point is a kinetic model for low-density granular mixtures recently proposed by the authors [Vega Reyes F et al. 2007 Phys. Rev. E 75 061306]. Two routes have been considered. First, a hydrodynamic or normal solution is found by exploiting a formal mapping between the kinetic equations for the gas particles and for the impurity. We show that the transport properties of the impurity are characterized by the ratio between the temperatures of the impurity and gas particles and by five generalized transport coefficients: three related to the momentum flux (a nonlinear shear viscosity and two normal stress differences) and two related to the heat flux (a nonlinear thermal conductivity and a cross coefficient measuring a component of the heat flux orthogonal to the thermal gradient). Second, by means of a Monte Carlo simulation method we numerically solve the kinetic equations and show that our hydrodynamic solution is valid in the bulk of the fluid when realistic boundary conditions are used. Furthermore, the hydrodynamic solution applies to arbitrarily (inside the continuum regime) large values of the shear rate, of the inelasticity, and of the rest of parameters of the system. Preliminary simulation results of the true Boltzmann description show the reliability of the nonlinear hydrodynamic solution of the kinetic model. This shows again the validity of a hydrodynamic description for granular flows, even under extreme conditions, beyond the Navier-Stokes domain.Comment: 23 pages, 11 figures; v2: Preliminary DSMC results from the Boltzmann equation included, Fig. 11 is ne

    Thermal properties of an impurity immersed in a granular gas of rough hard spheres

    Full text link
    We study in this work the dynamics of a granular impurity immersed in a low-density granular gas of identical particles. For description of the kinetics of the granular gas and the impurity particles we use the rough hard sphere collisional model. We take into account the effects of non-conservation of energy upon particle collision. We find an (approximate) analytical solution of the pertinent kinetic equations for the single-particle velocity distribution functions that reproduces reasonably well the properties of translational/rotational energy non-equipartition. We assess the accuracy of the theoretical solution by comparing with computer simulations. For this, we use two independent computer data sets, from molecular dynamics (MD) and from Direct Simulation Monte Carlo method (DSMC). Both approach well, with different degrees, the kinetic theory within a reasonable range of parameter values.Comment: 4 pages, 2 figures. Written for Powders and Grains 2017 conference proceedin

    On the emergence of large and complex memory effects in nonequilibrium fluids

    Get PDF
    Control of cooling and heating processes is essential in many industrial and biological processes. In fact, the time evolution of an observable quantity may differ according to the previous history of the system. For example, a system that is being subject to cooling and then, at a given time twt_{w} for which the instantaneous temperature is T(tw)=TstT(t_w)=T_{\mathrm{st}}, is suddenly put in contact with a temperature source at TstT_{\mathrm{st}} may continue cooling down temporarily or, on the contrary, undergo a temperature rebound. According to current knowledge, there can be only one "spurious" and small peak/low. However, our results prove that, under certain conditions, more than one extremum may appear. Specifically, we have observed regions with two extrema and a critical point with three extrema. We have also detected cases where extraordinarily large extrema are observed, as large as the order of magnitude of the stationary value of the variable of interest. We show this by studying the thermal evolution of a low density set of macroscopic particles that do not preserve kinetic energy upon collision, i.e., a granular gas. We describe the mechanism that signals in this system the emergence of these complex and large memory effects, and explain why similar observations can be expected in a variety of systems.Comment: 15 pages, 5 figure

    Introductory Chapter: Earthquakes - Impact, Community Vulnerability, and Resilience

    Get PDF
    This book is a collection of scientific papers on earthquake preparedness, vulnerability, resilience, and risk assessment. Using case studies from various countries, chapters cover topics ranging from early warning systems and risk perception to long-term effects of earthquakes on vulnerable communities and the science of seismology, among others. This volume is a valuable resource for researchers, students, non-governmental organizations, and key decision-makers involved in earthquake disaster management systems at national, regional, and local levels

    The development of a fire safety management system model

    Get PDF
    Abstract unavailable please refer to PDF
    corecore