19 research outputs found

    An exocytoplasmic endonuclease with restriction function in Streptomyces antibioticus.

    No full text
    Streptomyces antibioticus produces a strong endo-DNase which is located between the cytoplasmic membrane and the cell wall. All DNA substrates assayed, including the chromosomal DNA of this species and several bacteriophage DNAs, were completely degraded in vitro by the enzyme. The rate of synthesis of the nuclease depended on the growth medium. In NBG medium, in which the enzyme is not produced, the size of lytic plaques of several actinophages was larger than that in GYM or GAE medium, in which synthesis of the nuclease takes place late in growth. In addition, one of the phages assayed, phi A6, showed a diminution of its efficiency of plating in GYM medium with respect to that in NBG medium; another phage, phi A9, grew in NBG medium but not in the other two media. It is postulated that the presence of the host nuclease, together with the capability of the particular phage to absorb on S. antibioticus of different growth phases, determines the efficiency of growth and the plaque size of the phages on productive media. This hypothesis was confirmed when the growth of phi A6 and phi A9 in a mutant of S. antibioticus lacking the endonuclease activity was analyzed. It is concluded that the enzyme can assume, under some circumstances, a role in in vivo restriction

    Preservation of the microbiological and biochemical quality of raw milk by carbon dioxide addition A pilot-scale study

    No full text
    Carbon dioxide treatment of refrigerated raw milk was evaluated as a method for extending storage life by inhibiting growth of psychrotrophic bacteria and other bacterial groups in raw milk. The effect of CO2 acidification followed by degasification and pasteurization on biochemical and microbiological properties of cold stored milk was studied on a pilot scale. Two CO2 treatments (acidification to pH 6.2 and to pH 6.0) were compared with a control (untreated) milk during 4 days of storage at 4°C. Total bacterial counts in the categories of milk established in this study were mainly determined by the proteolytic psychrotroph levels. The inhibitory capability of CO2 was greater in the low-quality than in the high-quality milk category. Acidification at pH 6.0 was more inhibitory than that at pH 6.2, especially against proteolytic psychrotrophs. Neither caseins nor whey proteins were affected by CO2 treatment and pasteurization. Organic acid (orotic, citric, uric, formic, acetic, propionic, and hippuric) concentrations did not change after CO2 treatment, cold storage, or the pasteurization process the lactic acid content of CO2-treated milks remained constant during the refrigeration time but increased slightly in the control. In general, lower amounts of volatile compounds were produced in CO2-treated milks during refrigeration than in control milk. Ethanol and 2-propanol levels were most affected by desgasification and pasteurization. Sensory evaluation revealed no significant differences between CO2-treated milk after degasificalion and pasteurization and the untreated milk used as control. It was concluded that degasification and pasteurization on a pilot scale eliminated CO2 from milk with minimum detrimental effects on its biochemical and sensory properties, making this process acceptable for milk preservation
    corecore