20 research outputs found

    Effects of Erythrodiol on the Antioxidant Response and Proteome of HepG2 Cells

    Get PDF
    This research was funded by the University of Jaén (Plan Propio de Investigación, grant number UJA2014/07/13) and by Junta de Andalucía (Plan Andaluz de Investigación, Junta de Andalucía, Spain), grant BIO-341 “Enzymes and Metabolism”.Erythrodiol (EO) is a pentacyclic triterpenic alcohol found in olive tree leaves and olive oil, and it has important effects on the health properties and quality of olive oil. In this study, we characterized the cytotoxic effects of EO on human hepatocarcinoma (HepG2) cells by studying changes in cell viability, reactive oxygen species (ROS) production, antioxidant defense systems, and the proteome. The results reveal that EO markedly decreased HepG2 cell viability without changing ROS levels. The concentrations of glutathione and NADPH were significantly reduced, with selective changes in the activity of several antioxidant enzymes: glutathione peroxidase, glutathione reductase, glucose 6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase. Proteomic data reveal that EO led to the complete elimination or decreased abundance of 41 and 3 proteins, respectively, and the abundance of 29 proteins increased. The results of functional enrichment analysis show that important metabolic processes and the nuclear transport of mature mRNA were impaired, whereas AMP biosynthesis and cell cycle G2/M phase transition were induced. The transcription factors and miRNAs involved in this response were also identified. These potent antiproliferative effects make EO a good candidate for the further analysis of its hepatic antitumor effects in in vivo studies.University of Jaén (Plan Propio de Investigación, grant number UJA2014/07/13)Junta de Andalucía (Plan Andaluz de Investigación, Junta de Andalucía, Spain), grant BIO-34

    Nutraceutical Role of Polyphenols and Triterpenes Present in the Extracts of Fruits and Leaves of Olea europaea as Antioxidants, Anti-Infectives and Anticancer Agents on Healthy Growth

    Get PDF
    This research has been funded by the Junta de Andalucia (Andalusian Research Plan, Junta de Andalucia, Spain) by the grant from the research group BIO-157 "Drugs, Environmental Toxics and Cellular Metabolism".There is currently a worldwide consensus and recognition of the undoubted health benefits of the so-called Mediterranean diet, with its intake being associated with a lower risk of mortality. The most important characteristics of this type of diet are based on the consumption of significant amounts of fruit, vegetables, legumes, and nuts, which provide, in addition to some active ingredients, fiber and a proportion of vegetable protein, together with extra virgin olive oil (EVOO) as the main sources of vegetable fat. Fish and meat from poultry and other small farm animals are the main sources of protein. One of the main components, as already mentioned, is EVOO, which is rich in monounsaturated fatty acids and to a lesser extent in polyunsaturated fatty acids. The intake of this type of nutrient also provides an important set of phytochemicals whose health potential is widely spread and agreed upon. These phytochemicals include significant amounts of anthocyanins, stilbenes, flavonoids, phenolic acids, and terpenes of varying complexities. Therefore, the inclusion in the diet of this type of molecules, with a proven healthy effect, provides an unquestionable preventive and/or curative activity on an important group of pathologies related to cardiovascular, infectious, and cancerous diseases, as well as those related to the metabolic syndrome. The aim of this review is therefore to shed light on the nutraceutical role of two of the main phytochemicals present in Olea europaea fruit and leaf extracts, polyphenols, and triterpenes, on healthy animal growth. Their immunomodulatory, anti-infective, antioxidant, anti-aging, and anti-carcinogenic capabilities show them to be potential nutraceuticals, providing healthy growth.Junta de Andalucia BIO-15

    The natural triterpene maslinic acid induces apoptosis in HT29 colon cancer cells by a JNK-p53-dependent mechanism

    Get PDF
    [Background] Maslinic acid, a pentacyclic triterpene found in the protective wax-like coating of the leaves and fruit of Olea europaea L., is a promising agent for the prevention of colon cancer. We have shown elsewhere that maslinic acid inhibits cell proliferation to a significant extent and activates mitochondrial apoptosis in colon cancer cells. In our latest work we have investigated further this compound's apoptotic molecular mechanism. [Methods] We used HT29 adenocarcinoma cells. Changes genotoxicity were analyzed by single-cell gel electrophoresis (comet assay). The cell cycle was determined by flow cytometry. Finally, changes in protein expression were examined by western blotting. Student's t-test was used for statistical comparison. [Results] HT29 cells treated with maslinic acid showed significant increases in genotoxicity and cell-cycle arrest during the G0/G1 phase after 72 hours' treatment and an apoptotic sub-G0/G1 peak after 96 hours. Nevertheless, the molecular mechanism for this cytotoxic effect of maslinic acid has never been properly explored. We show here that the anti-tumoral activity of maslinic acid might proceed via p53-mediated apoptosis by acting upon the main signaling components that lead to an increase in p53 activity and the induction of the rest of the factors that participate in the apoptotic pathway. We found that in HT29 cells maslinic acid activated the expression of c-Jun NH2-terminal kinase (JNK), thus inducing p53. Treatment of tumor cells with maslinic acid also resulted in an increase in the expression of Bid and Bax, repression of Bcl-2, release of cytochrome-c and an increase in the expression of caspases -9, -3, and -7. Moreover, maslinic acid produced belated caspase-8 activity, thus amplifying the initial mitochondrial apoptotic signaling. [Conclusion] All these results suggest that maslinic acid induces apoptosis in human HT29 colon-cancer cells through the JNK-Bid-mediated mitochondrial apoptotic pathway via the activation of p53. Thus we propose a plausible sequential molecular mechanism for the expression of the different proteins responsible for the intrinsic mitochondrial apoptotic pathway. Further studies with other cell lines will be needed to confirm the general nature of these findings.This study was supported by grants BIO157 from the Andalucian regional government; SAF2008-00164 and ISCIII-RTICC (RD06/0020/0046) grants from the Spanish national government and & European Regional Development Fund (ERDF) "Una manera de hacer Europa" and by AGAUR-Generalitat de Catalunya grant 2009SGR1308, 2009 CTP 00026 and Icrea Academia award 2010 granted to M. Cascante)

    Synthesis of Tricyclic Pterolobirin H Analogue: Evaluation of Anticancer and Anti-Inflammatory Activities and Molecular Docking Investigations

    Get PDF
    This research was funded by grants from the Regional Government of Andalusia (Projects B-FQM-278-UGR20, B-FQM-650-UGR-20), and assistance was provided to the group FQM-348.Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/molecules28176208/s1Pterolobirin H (3), a cassane diterpene isolated from the roots of Pterolobium macropterum, exhibits important anti-inflammatory and anticancer properties. However, its relatively complex tetracyclic structure makes it difficult to obtain by chemical synthesis, thus limiting the studies of its biological activities. Therefore, we present here a short route to obtain a rational simplification of pterolobirin H (3) and some intermediates. The anti-inflammatory activity of these compounds was assayed in LPS-stimulated RAW 264.7 macrophages. All compounds showed potent inhibition of NO production, with percentages between 54 to 100% at sub-cytotoxic concentrations. The highest anti-inflammatory effect was shown for compounds 15 and 16. The simplified analog 16 revealed potential NO inhibition properties, being 2.34 higher than that of natural cassane pterolobirin H (3). On the other hand, hydroxyphenol 15 was also demonstrated to be the strongest NO inhibitor in RAW 264.7 macrophages (IC50 NO = 0.62 ± 0.21 μg/mL), with an IC50NO value 28.3 times lower than that of pterolobirin H (3). Moreover, the anticancer potential of these compounds was evaluated in three cancer cell lines: HT29 colon cancer cells, Hep-G2 hepatoma cells, and B16-F10 murine melanoma cells. Intermediate 15 was the most active against all the selected tumor cell lines. Compound 15 revealed the highest cytotoxic effect with the lowest IC50 value (IC50 = 2.45 ± 0.29 μg/mL in HT29 cells) and displayed an important apoptotic effect through an extrinsic pathway, as evidenced in the flow cytometry analysis. Furthermore, the Hoechst staining assay showed that analog 15 triggered morphological changes, including nuclear fragmentation and chromatin condensation, in treated HT29 cells. Finally, the in silico studies demonstrated that cassane analogs exhibit promising binding affinities and docking performance with iNOS and caspase 8, which confirms the obtained experimental results.Regional Government of Andalusia B-FQM-278-UGR20, B-FQM-650-UGR-20, FQM-34

    Semisynthesis and Evaluation of Anti-Inflammatory Activity of the Cassane-Type Diterpenoid Taepeenin F and of Some Synthetic Intermediates

    Get PDF
    A new strategy for the semisynthesis of the aromatic cassane-type diterpene taepeenin F (6) is reported. The introduction of the methyl group at C-14, characteristic of the target compound, was achieved via dienone 13, easily prepared from abietic acid (10), the major compound in renewable rosin. Biological assays of selected compounds are reported. The antiproliferative activity against HT29, B16-F10, and HepG2 tumor cell lines has been investigated. Salicylaldehyde 21 was the most active compound (IC50 = 7.72 μM). Products 16 and 21 displayed apoptotic effects in B16-F10 cells, with total apoptosis rates of 46 and 38.4%, respectively. This apoptotic process involves a significant arrest of the B16-F10 cell cycle, blocking the G0/G1 phase. Dienone 16 did not cause any loss of the mitochondrial membrane potential (MMP), while salicylaldehyde 21 caused a partial loss of the MMP. The anti-inflammatory activity of the selected compounds was investigated with the LPS-stimulated RAW 264.7 macrophages. All compounds showed potent NO inhibition, with percentages between 80 and 99% at subcytotoxic concentrations. Dienone 16 inhibited LPS-induced differentiation of RAW 264.7 cells, by increasing the proportion of cells in the S phase. In addition, salicylaldehyde 21 had effects on the cell cycle, recovering the cells from the G0/G1 full arrest produced in response to LPS action.Junta de Andalucia B-FQM-278-UGR20 B-FQM-650-UGR20 FQM-348 BIO-157Universidad de Granada/CBU

    Maslinic Acid, a Triterpene from Olive, Affects the Antioxidant and Mitochondrial Status of B16F10 Melanoma Cells Grown under Stressful Conditions

    Get PDF
    Maslinic acid (MA) is a natural compound whose structure corresponds to a pentacyclic triterpene. It is abundant in the cuticular lipid layer of olives. MA has many biological and therapeutic properties related to health, including antitumor, anti-inflammatory, antimicrobial, antiparasitic, antihypertensive, and antioxidant activities. However, no studies have been performed to understand the molecular mechanism induced by this compound in melanoma cancer. The objective of this study was to examine the effect of MA in melanoma (B16F10) cells grown in the presence or absence of fetal bovine serum (FBS). We performed cell proliferation measurements, and the reactive oxygen species (ROS) measurements using dihydrorhodamine 123 (DHR 123) and activities of catalase, glucose 6-phosphate dehydrogenase, glutathione S-transferase, and superoxide dismutase. These changes were corroborated by expression assays. FBS absence reduced cell viability decreasing IC50 values of MA.The DHR 123 data showed an increase in the ROS level in the absence of FBS. Furthermore, MA had an antioxidant effect at lower assayed levels measured as DHR and antioxidant defense.However, at higher dosagesMAinduced cellular damage by apoptosis as seen in the results obtained.This study has been supported, in part, by funds of the consolidated Research Group BIO-157, from the General Secretariat of Universities, Research and Technology of the Ministry of Economy, Innovation, Science and Employment Government of the Junta de Andaluc´ıa (Spain), and by the Research Contract no. C-3650-00 under the program FEDER-INNTERCONECTA from the Spanish Government and European Union FEDER funds. Amalia P´erez-Jim´enez is a recipient of a postdoctoral research fellowship Torres- Quevedo no. PTQ 12-05739

    Synthesis and Biological Evaluation of Cassane Diterpene (5 alpha)-Vuacapane-8(14), 9(11)-Diene and of Some Related Compounds

    Get PDF
    A set of thirteen cassane-type diterpenes was synthesized and an expedient synthetic route was used to evaluate 14-desmethyl analogs of the most active tested cassane. The anti-inflammatory activities of these 13 compounds were evaluated on a lipopolysaccharide (LPS)-activated RAW 264.7 cell line by inhibition of nitric oxide (NO) production, some of them reaching 100% NO inhibition after 72 h of treatment. The greatest anti-inflammatory effect was observed for compounds 16 and 20 with an IC50 NO of 2.98 +/- 0.04 mu g/mL and 5.71 +/- 0.14 mu g/mL, respectively. Flow-cytometry analysis was used to determine the cell cycle distribution and showed that the inhibition in NO release was accompanied by a reversion of the differentiation processes. Moreover, the anti-cancer potential of these 13 compounds were evaluated in three tumor cell lines (B16-F10, HT29, and Hep G2). The strongest cytotoxic effect was achieved by salicylaldehyde 20, and pterolobirin G (6), with IC50 values around 3 mu g/mL in HT29 cells, with total apoptosis rates 80% at IC80 concentrations, producing a significant cell-cycle arrest in the G0/G1 phase, and a possible activation of the extrinsic apoptotic pathway. Additionally, initial SAR data analysis showed that the methyl group at the C-14 positions of cassane diterpenoids is not always important for their cytotoxic and anti-inflammatory activities.Junta de Andalucia BFQM-278-UGR20 B-FQM-650-UGR2

    Diclofenac N-Derivatives as Therapeutic Agents with Anti-Inflammatory and Anti-Cancer Effect

    Get PDF
    A series of diclofenac N-derivatives (2, 4, 6, 8c, 9c, 10a-c) were synthesized in order to test their anti-cancer and anti-inflammatory effects. The anticarcinogen activity has been assayed against three cancer cell lines: HT29, human colon cancer cells; Hep-G2, human hepatic cells; and B16-F10, murine melanoma cells. First, we determined the cytotoxicity of the different compounds, finding that the most effective compound was compound 8c against all cell lines and both compounds 4 and 6 in human Hep-G2 and HT29 cell lines. Compounds 4 and 8c were selected for the percentage of apoptosis determination, cell cycle distribution, and mitochondrial membrane potential measure because these products presented the lowest IC50 values in two of the three cancer cell lines assayed (B16-F10 and HepG2), and were two of the three products with lowest IC50 in HT29 cell line. Moreover, the percentages of apoptosis induction were determined for compounds 4 and 8c, showing that the highest values were between 30 to 60%. Next, the effects of these two compounds were observed on the cellular cycle, resulting in an increase in the cell population in G2/M cell cycle phase after treatment with product 8c, whereas compound 4 increased the cells in phase G0/G1, by possible differentiation process induction. Finally, to determine the possible apoptosis mechanism triggered by these compounds, mitochondrial potential was evaluated, indicating the possible activation of extrinsic apoptotic mechanism. On the other hand, we studied the anti-inflammatory effects of these diclofenac (DCF) derivatives on lipopolysaccharide (LPS) activated RAW 264.7 macrophagesmonocytes murine cells by inhibition of nitric oxide (NO) production. As a first step, we determined the cytotoxicity of the synthesized compounds, as well as DCF, against these cells. Then, sub-cytotoxic concentrations were used to determine NO release at different incubation times. The greatest antiinflammatory effect was observed for products 2, 4, 8c, 10a, 10b, and 9c at 20 µg·mL−1 concentration after 48 h of treatment, with inhibition of produced NO between 60 to 75%, and a concentration that reduces to the 50% the production of NO (IC50 NO) between 2.5 to 25 times lower than that of DCF. In this work, we synthesized and determined for the first time the anti-cancer and anti-inflammatory potential of eight diclofenac N-derivatives. In agreement with the recent evidences suggesting that inflammation may contribute to all states of tumorigenesis, the development of these new derivatives capable of inducing apoptosis and anti-inflammatory effects at very low concentrations represent new effective therapeutic strategies against these diseases.MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD, PID2019-106222RB-C32/SRA (State Research Agency, 10.13039/501100011033)“Consejería de Economía, Conocimiento, Empresas y Universidad. Junta de Andalucía”, grant number B1-BIO-281-UGR1

    Evaluation of Anticancer and Anti-Inflammatory Activities of Some Synthetic Rearranged Abietanes

    Get PDF
    This research was funded by grants from the Regional Government of Andalusia (Projects B-FQM-278-UGR20, and B-FQM-650-UGR-20), and assistance was provided to the group FQM-348.Supplementary Materials: The following supporting information can be downloaded at https://www.mdpi.com/article/10.3390/ijms241713583/s1Synthesis of the rearranged abietane diterpenes pygmaeocins C and D, viridoquinone, saprorthoquinone, and 1-deoxyviroxocine has been successfully achieved. The anticancer and anti-inflammatory activities of selected orthoquinonic compounds 5, 7, 13, and 19, as well as pygmaeocin C (17), were evaluated for the first time. The antitumor properties were assessed using three cancer cell lines: HT29 colon cancer cells, Hep G2 hepatocellular carcinoma cells, and B16-F10 murine melanoma cells. Compounds 5 and 13 showed the highest cytotoxicity in HT29 cells (IC50 = 6.69 ± 1.2 µg/mL and IC50 = 2.7 ± 0.8 µg/mL, respectively). Cytometric studies showed that this growth inhibition involved phase S cell cycle arrest and apoptosis induction, possibly through the activation of the intrinsic apoptotic pathway. Morphological apoptotic changes, including nuclear fragmentation and chromatin condensation, were also observed. Furthermore, the anti-inflammatory activity of these compounds was evaluated on the basis of their ability to inhibit nitric oxide production on the lipopolysaccharide activated RAW 264.7 macrophage cell line. Although all compounds showed high anti-inflammatory activity, with percentages between 40 and 100%, the highest anti-inflammatory potential was obtained by pygmaeocin B (5) (IC50NO = 33.0 ± 0.8 ng/mL). Our results suggest that due to their dual roles, this type of compound could represent a new strategy, contributing to the development of novel anticancer agents.Regional Government of Andalusia B-FQM-278-UGR20, B-FQM-650-UGR-20, FQM-34

    Synthesis, Optical Properties, and Antiproliferative Evaluation of NBD-Triterpene Fluorescent Probes

    Get PDF
    A fluorescent labeling protocol for hydroxylated natural compounds with promising antitumor properties has been used to synthesize 12 derivatives having fluorescent properties and biological activity. The reagent used for the synthesis of these fluorescent derivatives was 7-nitrobenzo-2-oxa-1,3-diazole chloride (NBD-Cl). The linkers employed to bind the NBD-Cl reagent to the natural compounds were ω-amino acids of different chain lengths. The natural triterpene compounds chosen were oleanolic and maslinic acid, as their corresponding 28-benzylated derivatives. Thus, triterpene conjugates with NBD have been studied for their optical fluorescence properties and their biological activities against cell proliferation in three cancer cell lines (B16-F10, HT-29, and HepG2), compared with three nontumor cell lines (HPF, IEC-18, and WRL68) from different tissues. The results of the fluorescence study have shown that the best fluorescent labels are those in which the ω-amino acid chain is shorter, and the carboxylic group is not benzylated. Analysis by confocal microscopy showed that these compounds were rapidly incorporated into cells in all three cancer cell lines, with these same derivatives showing the highest toxicity against the cancer cell lines tested. Then, the fluorescent labeling of these triterpene conjugates with NBD enabled their uptake and subcellular distribution to be followed to probe in detail their biological properties at the cellular and molecular level.Grupo de Investigación "Biotecnología y Química de Productos Naturales" (grupo FQM-139 del PAIDI de la Junta de Andalucía
    corecore