29,234 research outputs found
Thermodynamic quantum critical behavior of the Kondo necklace model
We obtain the phase diagram and thermodynamic behavior of the Kondo necklace
model for arbitrary dimensions using a representation for the localized and
conduction electrons in terms of local Kondo singlet and triplet operators. A
decoupling scheme on the double time Green's functions yields the dispersion
relation for the excitations of the system. We show that in there is
an antiferromagnetically ordered state at finite temperatures terminating at a
quantum critical point (QCP). In 2-d, long range magnetic order occurs only at
T=0. The line of Neel transitions for varies with the distance to the
quantum critical point QCP as, where the shift
exponent . In the paramagnetic side of the phase diagram, the
spin gap behaves as for consistent with
the value found for the dynamical critical exponent. We also find in this
region a power law temperature dependence in the specific heat for
and along the non-Fermi liquid trajectory. For , in the so-called Kondo spin liquid phase, the thermodynamic
behavior is dominated by an exponential temperature dependence.Comment: Submitted to PR
Prediction of protein-protein interactions using one-class classification methods and integrating diverse data
This research addresses the problem of prediction of protein-protein interactions (PPI)
when integrating diverse kinds of biological information. This task has been commonly
viewed as a binary classification problem (whether any two proteins do or do not interact)
and several different machine learning techniques have been employed to solve this
task. However the nature of the data creates two major problems which can affect results.
These are firstly imbalanced class problems due to the number of positive examples (pairs
of proteins which really interact) being much smaller than the number of negative ones.
Secondly the selection of negative examples can be based on some unreliable assumptions
which could introduce some bias in the classification results.
Here we propose the use of one-class classification (OCC) methods to deal with the task of
prediction of PPI. OCC methods utilise examples of just one class to generate a predictive
model which consequently is independent of the kind of negative examples selected; additionally
these approaches are known to cope with imbalanced class problems. We have
designed and carried out a performance evaluation study of several OCC methods for this
task, and have found that the Parzen density estimation approach outperforms the rest. We
also undertook a comparative performance evaluation between the Parzen OCC method
and several conventional learning techniques, considering different scenarios, for example
varying the number of negative examples used for training purposes. We found that the
Parzen OCC method in general performs competitively with traditional approaches and in
many situations outperforms them. Finally we evaluated the ability of the Parzen OCC
approach to predict new potential PPI targets, and validated these results by searching for
biological evidence in the literature
Expansion coefficient of the pseudo-scalar density using the gradient flow in lattice QCD
We use the Yang-Mills gradient flow to calculate the pseudo-scalar expansion
coefficient . This quantity is a key ingredient to obtaining the
chiral condensate and strange quark content of the nucleon using the Lattice
QCD formulation, which can ultimately determine the spin independent (SI)
elastic cross section of dark matter models involving WIMP-nucleon
interactions. The goal, using the gradient flow, is to renormalize the chiral
condensate and the strange content of the nucleon without a power divergent
subtraction. Using Chiral symmetry and the small flow time expansion of the
gradient flow, the scalar density at zero flow time can be related to the
pseudo-scalar density at non zero flow time. By computing the flow time
dependance of the pseudo-scalar density over multiple lattices box sizes,
lattice spacings and pion masses, we can obtain the scalar density of the
nucleon. Our lattice ensembles are , PCAC-CS gauge field
configurations, varying over ~MeV at
~fm, with additional ensembles that vary ~fm at ~MeV
- …