13,894 research outputs found
Observed modes of sea surface temperature variability in the South Pacific region
The South Pacific (SP) region exerts large control on the climate of the Southern Hemisphere at many times scales. This paper identifies the main modes of interannual sea surface temperature (SST) variability in the SP which consist of a tropical-driven mode related to a horseshoe structure of positive/negative SST anomalies within midlatitudes and highly correlated to ENSO and Interdecadal Pacific Oscillation (IPO) variability, and another mode mostly confined to extratropical latitudes which is characterized by zonal propagation of SST anomalies within the South Pacific Gyre. Both modes are associated with temperature and rainfall anomalies over the continental regions of the Southern Hemisphere. Besides the leading mode which is related to well known warmer/cooler and drier/moister conditions due to its relationship with ENSO and the IPO, an inspection of the extratropical mode indicates that it is associated with distinct patterns of sea level pressure and surface temperature advection. These relationships are used here as plausible and partial explanations to the observed warming trend observed within the Southern Hemisphere during the last decades.The authors would like to thank Scott Power for his comments on an earlier version of the manuscript and the two anonymous reviewers whose suggestions led to a substantial improvement of the paper. This study was supported by Grants UBACyT-20020100100803, UBACyT-20020120300051, PIP-11220120100586 and the SPECS (GA 308378) EU-funded Project. JG-S was partially supported by the H2020-funded MSCA-IF-EF DPETNA project (GA No. 655339). The authors acknowledge the Red Española de Supercomputación (RES) and PRACE for awarding access to MareNostrum 3 at the Barcelona Supercomputing Center through the HiResClim project. The support of Virginie Guémas and Oriol Mula-Valls at the Barcelona Supercomputing Center is warmly appreciated.Peer ReviewedPostprint (author's final draft
Impurity in a granular gas under nonlinear Couette flow
We study in this work the transport properties of an impurity immersed in a
granular gas under stationary nonlinear Couette flow. The starting point is a
kinetic model for low-density granular mixtures recently proposed by the
authors [Vega Reyes F et al. 2007 Phys. Rev. E 75 061306]. Two routes have been
considered. First, a hydrodynamic or normal solution is found by exploiting a
formal mapping between the kinetic equations for the gas particles and for the
impurity. We show that the transport properties of the impurity are
characterized by the ratio between the temperatures of the impurity and gas
particles and by five generalized transport coefficients: three related to the
momentum flux (a nonlinear shear viscosity and two normal stress differences)
and two related to the heat flux (a nonlinear thermal conductivity and a cross
coefficient measuring a component of the heat flux orthogonal to the thermal
gradient). Second, by means of a Monte Carlo simulation method we numerically
solve the kinetic equations and show that our hydrodynamic solution is valid in
the bulk of the fluid when realistic boundary conditions are used. Furthermore,
the hydrodynamic solution applies to arbitrarily (inside the continuum regime)
large values of the shear rate, of the inelasticity, and of the rest of
parameters of the system. Preliminary simulation results of the true Boltzmann
description show the reliability of the nonlinear hydrodynamic solution of the
kinetic model. This shows again the validity of a hydrodynamic description for
granular flows, even under extreme conditions, beyond the Navier-Stokes domain.Comment: 23 pages, 11 figures; v2: Preliminary DSMC results from the Boltzmann
equation included, Fig. 11 is ne
- …