5,336 research outputs found

    Beyond the Spin Model Approximation for Ramsey Spectroscopy

    Get PDF
    Ramsey spectroscopy has become a powerful technique for probing non-equilibrium dynamics of internal (pseudospin) degrees of freedom of interacting systems. In many theoretical treatments, the key to understanding the dynamics has been to assume the external (motional) degrees of freedom are decoupled from the pseudospin degrees of freedom. Determining the validity of this approximation -- known as the spin model approximation -- is complicated, and has not been addressed in detail. Here we shed light in this direction by calculating Ramsey dynamics exactly for two interacting spin-1/2 particles in a harmonic trap. We focus on ss-wave-interacting fermions in quasi-one and two-dimensional geometries. We find that in 1D the spin model assumption works well over a wide range of experimentally-relevant conditions, but can fail at time scales longer than those set by the mean interaction energy. Surprisingly, in 2D a modified version of the spin model is exact to first order in the interaction strength. This analysis is important for a correct interpretation of Ramsey spectroscopy and has broad applications ranging from precision measurements to quantum information and to fundamental probes of many-body systems

    Closed Spaces in Cosmology

    Full text link
    This paper deals with two aspects of relativistic cosmologies with closed (compact and boundless) spatial sections. These spacetimes are based on the theory of General Relativity, and admit a foliation into space sections S(t), which are spacelike hypersurfaces satisfying the postulate of the closure of space: each S(t) is a 3-dimensional, closed Riemannian manifold. The discussed topics are: (1) A comparison, previously obtained, between Thurston's geometries and Bianchi-Kantowski-Sachs metrics for such 3-manifolds is here clarified and developed. (2) Some implications of global inhomogeneity for locally homogeneous 3-spaces of constant curvature are analyzed from an observational viewpoint.Comment: 20 pages, 6 figures, revised version of published paper. In version 2: several misprints corrected, 'redshifting' in figures improved. Version 3: a few style corrections; couple of paragraphs in subsection 2.4 rewritten. Version 4: figures 5 and 6 corrrecte

    Preparation and detection of magnetic quantum phases in optical superlattices

    Full text link
    We describe a novel approach to prepare, detect and characterize magnetic quantum phases in ultra-cold spinor atoms loaded in optical superlattices. Our technique makes use of singlet-triplet spin manipulations in an array of isolated double well potentials in analogy to recently demonstrated quantum control in semiconductor quantum dots. We also discuss the many-body singlet-triplet spin dynamics arising from coherent coupling between nearest neighbor double wells and derive an effective description for such system. We use it to study the generation of complex magnetic states by adiabatic and non-equilibrium dynamics.Comment: 5 pages, 2 Figures, reference adde

    d-Wave Superfluidity in Optical Lattices of Ultracold Polar Molecules

    Get PDF
    Recent work on ultracold polar molecules, governed by a generalization of the t-J Hamiltonian, suggests that molecules may be better suited than atoms for studying d-wave superfluidity due to stronger interactions and larger tunability of the system. We compute the phase diagram for polar molecules in a checkerboard lattice consisting of weakly coupled square plaquettes. In the simplest experimentally realizable case where there is only tunneling and an XX-type spin-spin interaction, we identify the parameter regime where d-wave superfluidity occurs. We also find that the inclusion of a density-density interaction destroys the superfluid phase and that the inclusion of a spin-density or an Ising-type spin-spin interaction can enhance the superfluid phase. We also propose schemes for experimentally realizing the perturbative calculations exhibiting enhanced d-wave superfluidity.Comment: 22 pages, 12 figures; v2: revised discussion

    Hanbury Brown-Twiss Interferometry for Fractional and Integer Mott Phases

    Full text link
    Hanbury-Brown-Twiss interferometry (HBTI) is used to study integer and fractionally filled Mott Insulator (MI) phases in period-2 optical superlattices. In contrast to the quasimomentum distribution, this second order interferometry pattern exhibits high contrast fringes in the it insulating phases. Our detailed study of HBTI suggests that this interference pattern signals the various superfluid-insulator transitions and therefore can be used as a practical method to determine the phase diagram of the system. We find that in the presence of a confining potential the insulating phases become robust as they exist for a finite range of atom numbers. Furthermore, we show that in the trapped case the HBTI interferogram signals the formation of the MI domains and probes the shell structure of the system.Comment: 13 pages, 15 figure

    Realizing Exactly Solvable SU(N) Magnets with Thermal Atoms

    Get PDF
    We show that nn thermal fermionic alkaline-earth atoms in a flat-bottom trap allow one to robustly implement a spin model displaying two symmetries: the SnS_n symmetry that permutes atoms occupying different vibrational levels of the trap and the SU(NN) symmetry associated with NN nuclear spin states. The high symmetry makes the model exactly solvable, which, in turn, enables the analytic study of dynamical processes such as spin diffusion in this SU(NN) system. We also show how to use this system to generate entangled states that allow for Heisenberg-limited metrology. This highly symmetric spin model should be experimentally realizable even when the vibrational levels are occupied according to a high-temperature thermal or an arbitrary non-thermal distribution.Comment: 12 pages, 5 figures (including supplemental materials

    Comment on "High Field Studies of Superconducting Fluctuations in High-Tc Cuprates. Evidence for a Small Gap distinct from the Large Pseudogap"

    Full text link
    By using high magnetic field data to estimate the background conductivity, Rullier-Albenque and coworkers have recently published [Phys.Rev.B 84, 014522 (2011)] experimental evidence that the in-plane paraconductivity in cuprates is almost independent of doping. In this Comment we also show that, in contrast with their claims, these useful data may be explained at a quantitative level in terms of the Gaussian-Ginzburg-Landau approach for layered superconductors, extended by Carballeira and coworkers to high reduced-temperatures by introducing a total-energy cutoff [Phys.Rev.B 63, 144515 (2001)]. When combined, these two conclusions further suggest that the paraconductivity in cuprates is conventional, i.e., associated with fluctuating superconducting pairs above the mean-field critical temperature.Comment: 9 pages, 1 figur

    Relaxation of Fermionic Excitations in a Strongly Attractive Fermi Gas in an Optical Lattice

    Get PDF
    We theoretically study the relaxation of high energy single particle excitations into molecules in a system of attractive fermions in an optical lattice, both in the superfluid and the normal phase. In a system characterized by an interaction scale UU and a tunneling rate tt, we show that the relaxation rate scales as Ctexp(αU2/t2)\sim Ct\exp(-\alpha U^2/t^2) in the large U/tU/t limit. We obtain explicit expressions for the exponent α\alpha, both in the low temperature superfluid phase and the high temperature phase with pairing but no coherence between the molecules. We find that the relaxation rate decreases both with temperature and deviation of the fermion density from half-filling. We show that quasiparticle and phase degrees of freedom are effectively decoupled within experimental timescales allowing for observation of ordered states even at high total energy of the system.Comment: 5 pages, 3 figure
    corecore