6 research outputs found

    Braneworld with Induced Axial Symmetry

    Full text link
    We take arbitrary gravitational perturbations of a 5d spacetime and reduce it to the form an axially symmetric warped braneworld. Then, we write the filed equations for the linearized gravity perturbations. We obtain the equations that describes the graviton, gravivector and the graviscalar fluctuations and analyse the effects of the Schr\"odinger potentials that appear in these equations.Comment: 3 pages, one figure, typos corrected, to apear in the special issue of Brazilian Journal of Physics dedicated to the conference 100 years of relativity, Sao Paulo, Brazil, 200

    Estudos na gravitação de ordem superior

    No full text

    The Schenberg spherical gravitational wave detector: the first commissioning runs

    No full text
    Here we present a status report of the first spherical antenna project equipped with a set of parametric transducers for gravitational detection. The Mario Schenberg, as it is called, started its commissioning phase at the Physics Institute of the University of Sao Paulo, in September 2006, under the full support of FAPESP. We have been testing the three preliminary parametric transducer systems in order to prepare the detector for the next cryogenic run, when it will be calibrated. We are also developing sapphire oscillators that will replace the current ones thereby providing better performance. We also plan to install eight transducers in the near future, six of which are of the two-mode type and arranged according to the truncated icosahedron configuration. The other two, which will be placed close to the sphere equator, will be mechanically non-resonant. In doing so, we want to verify that if the Schenberg antenna can become a wideband gravitational wave detector through the use of an ultra-high sensitivity non-resonant transducer constructed using the recent achievements of nanotechnology
    corecore