5,734 research outputs found
Phase transitions, entanglement and quantum noise interferometry in cold atoms
We show that entanglement monotones can characterize the pronounced
enhancement of entanglement at a quantum phase transition if they are sensitive
to long-range high order correlations. These monotones are found to develop a
sharp peak at the critical point and to exhibit universal scaling. We
demonstrate that similar features are shared by noise correlations and verify
that these experimentally accessible quantities indeed encode entanglement
information and probe separability.Comment: 4 pages 4 figure
Signal of Bose condensation in an optical lattice at finite temperature
We discuss the experimental signal for the Bose condensation of cold atoms in
an optical lattice at finite temperature. Instead of using the visibility of
the interference pattern via the time-of-flight imaging, we show that the
momentum space density profile in the first Brillouin zone, in particular its
bimodal distribution, provides an unambiguous signal for the Bose condensation.
We confirm this point with detailed calculation of the change in the atomic
momentum distribution across the condensation phase transition, taking into
account both the global trapping potential and the atomic interaction effects.Comment: 4 pages, 2 figures, replaced with the published versio
Bistable Amphoteric Native Defect Model of Perovskite Photovoltaics
The past few years have witnessed unprecedented rapid improvement of the
performance of a new class of photovoltaics based on halide perovskites. This
progress has been achieved even though there is no generally accepted mechanism
of the operation of these solar cells. Here we present a model based on
bistable amphoteric native defects that accounts for all key characteristics of
these photovoltaics and explains many idiosyncratic properties of halide
perovskites. We show that a transformation between donor-like and acceptor-like
configurations leads to a resonant interaction between amphoteric defects and
free charge carriers. This interaction, combined with the charge transfer from
the perovskite to the electron and hole transporting layers results in the
formation of a dynamic n-i-p junction whose photovoltaic parameters are
determined by the perovskite absorber. The model provides a unified explanation
for the outstanding properties of the perovskite photovoltaics, including
hysteresis of J-V characteristics and ultraviolet light-induced degradation.Comment: 21 pages, 7 figure
Hanbury Brown-Twiss Interferometry for Fractional and Integer Mott Phases
Hanbury-Brown-Twiss interferometry (HBTI) is used to study integer and
fractionally filled Mott Insulator (MI) phases in period-2 optical
superlattices. In contrast to the quasimomentum distribution, this second order
interferometry pattern exhibits high contrast fringes in the it insulating
phases. Our detailed study of HBTI suggests that this interference pattern
signals the various superfluid-insulator transitions and therefore can be used
as a practical method to determine the phase diagram of the system. We find
that in the presence of a confining potential the insulating phases become
robust as they exist for a finite range of atom numbers. Furthermore, we show
that in the trapped case the HBTI interferogram signals the formation of the MI
domains and probes the shell structure of the system.Comment: 13 pages, 15 figure
Magnetization vector in the reversible region of a highly anisotropic cuprate superconductor: anisotropy factor and the role of 2D vortex fluctuations
By using a high quality Tl2Ba2Ca2Cu3O10 (Tl-2223) single crystal as an
example, the magnetization vector was probed in the reversible region of highly
anisotropic cuprate superconductors. For that, we have measured its components
along and transverse to the applied magnetic field for different crystal
orientations. The analysis shows that the angular dependence of the
perpendicular component of the magnetization vector follows the one predicted
by a London-like approach which includes a contribution associated with the
thermal fluctuations of the 2D vortex positions. For the Tl-2223 crystal
studied here, a lower bound for the anisotropy factor was estimated to be about
190.Comment: 6 pages, 3 figure
Lifshitz-like transition and enhancement of correlations in a rotating bosonic ring lattice
We study the effects of rotation on one-dimensional ultra-cold bosons
confined to a ring lattice. For commensurate systems, at a critical value of
the rotation frequency, an infinitesimal interatomic interaction energy opens a
gap in the excitation spectrum, fragments the ground state into a macroscopic
superposition of two states with different circulation and generates a sudden
change in the topology of the momentum distribution. These features are
reminiscent of the topological changes in the Fermi surface that occurs in the
Lifshitz transition in fermionic systems. The entangled nature of the ground
state induces a strong enhancement of quantum correlations and decreases the
threshold for the Mott insulator transition. In contrast to the commensurate
case, the incommensurate lattice is rather insensitive to rotation. Our studies
demonstrate the utility of noise correlations as a tool for identifying new
physics in strongly correlated systems.Comment: 5 pages, 4 figure
Thermodynamics of quantum degenerate gases in optical lattices
The entropy-temperature curves are calculated for non-interacting Bose and
Fermi gases in a 3D optical lattice. These curves facilitate understanding of
how adiabatic changes in the lattice depth affect the temperature, and we
demonstrate regimes where the atomic sample can be significantly heated or
cooled by the loading process. We assess the effects of interactions on a Bose
gas in a deep optical lattice, and show that interactions ultimately limit the
extent of cooling that can occur during lattice loading.Comment: 6 pages, 4 figures. Submitted to proceedings of Laser Physics 2006
Worksho
Measuring atomic NOON-states and using them to make precision measurements
A scheme for creating NOON-states of the quasi-momentum of ultra-cold atoms
has recently been proposed [New J. Phys. 8, 180 (2006)]. This was achieved by
trapping the atoms in an optical lattice in a ring configuration and rotating
the potential at a rate equal to half a quantum of angular momentum . In this
paper we present a scheme for confirming that a NOON-state has indeed been
created. This is achieved by spectroscopically mapping out the anti-crossing
between the ground and first excited levels by modulating the rate at which the
potential is rotated. Finally we show how the NOON-state can be used to make
precision measurements of rotation.Comment: 14 preprint pages, 7 figure
Ultracold atoms confined in an optical lattice plus parabolic potential: a closed-form approach
We discuss interacting and non-interacting one dimensional atomic systems
trapped in an optical lattice plus a parabolic potential. We show that, in the
tight-binding approximation, the non-interacting problem is exactly solvable in
terms of Mathieu functions. We use the analytic solutions to study the
collective oscillations of ideal bosonic and fermionic ensembles induced by
small displacements of the parabolic potential. We treat the interacting boson
problem by numerical diagonalization of the Bose-Hubbard Hamiltonian. From
analysis of the dependence upon lattice depth of the low-energy excitation
spectrum of the interacting system, we consider the problems of
"fermionization" of a Bose gas, and the superfluid-Mott insulator transition.
The spectrum of the noninteracting system turns out to provide a useful guide
to understanding the collective oscillations of the interacting system,
throughout a large and experimentally relevant parameter regime.Comment: 19 pages, 15 figures Minor modification were done and new references
were adde
- …