14 research outputs found
Artificial selection for timing of dispersal in predatory mites yields lines that differ in prey exploitation strategies
Dispersal is the main determinant of the dynamics and persistence of predator–prey metapopulations. When defining dispersal as a predator exploitation strategy, theory predicts the existence of a continuum of strategies: from some dispersal throughout the predator–prey interaction (the Milker strategy) to dispersal only after the prey had been exterminated (the Killer strategy). These dispersal strategies relate to differences in prey exploitation at the population level, with more dispersal leading to longer predator–prey interaction times and higher cumulative numbers of dispersing predators. In the predatory mite Phytoseiulus persimilis, empirical studies have shown genetic variation for prey exploitation as well as for the timing of aerial dispersal in the presence of prey. Here, we test whether artificial selection for lines that differ in timing of dispersal also results in these lines differing in prey exploitation. Six rounds of selection for early or late dispersal resulted in predator lines displaying earlier or later dispersal. Moreover, it resulted—at the population level—in predicted differences in the local predator–prey interaction time and in the cumulative numbers of dispersers in a population dynamics experiment. We pose that timing of dispersal is a heritable trait that can be selected in P. persimilis, which results in lines that show quantitative differences in local predator–prey dynamics. This opens ways to experimentally investigate the evolution of alternative prey exploitation strategies and to select for predator strains with prey exploitation strategies resulting in better biological control
Predators marked with chemical cues from one prey have increased attack success on another prey species
1. To reduce the risk of being eaten by predators, prey alter their morphology or behaviour. This response can be tuned to the current danger if chemical or other cues associated with predators inform the prey about the risks involved.
2. It is well known that various prey species discriminate between chemical cues from predators that fed on conspecific prey and those that fed on heterospecific prey, and react stronger to the first. It is therefore expected that generalist predators are more successful in capturing a given prey species when they are contaminated with chemical cues from another prey species instead of cues from the same prey species.
3. Here, a generalist predatory mite was studied that feeds on thrips larvae as well as on whitefly eggs and crawlers. Mites were marked with cues (i.e. body fluids) of one of these two prey species and were subsequently offered thrips larva.
4. Predators marked with thrips cues killed significantly fewer thrips than predators marked with whitefly cues, even though the predator's tendency to attack was the same. In addition, more thrips larvae sought refuge in the presence of a predatory mite marked with thrips cues instead of whitefly cues.
5. This suggests that generalist predators may experience improved attack success when switching prey species.R.v.M. received a scholarship of the Technology Foundation
(STW Project 7180). G.B. received a fellowship from the
OECD. E.A.F. received a fellowship from FundaciĂł Caixa
CastellĂł-Bancaixa (E-2011-09
Gender-specific differences in cannibalism between a laboratory strain and a field strain of a predatory mite
Many phytoseiid species, including Phytoseiulus persimilis, are known to engage in cannibalism when food is scarce and when there is no possibility to disperse. In nature adult females of P. persimilis are known to disperse when prey is locally depleted. Males, in contrast, are expected to stay and wait for potential mates to mature. During this phase, males can obtain food by cannibalizing. Therefore, we hypothesize that male P. persimilis exhibit a higher tendency to cannibalize than females. Because rearing conditions in the laboratory usually prevent dispersal, prolonged culturing may also affect cannibalistic behavior. We hypothesize that this should especially affect cannibalism by females, because they consume far more food. We tested these hypotheses by comparing males and females from two strains, one of which had been in culture for over 20Â years, whereas the other was recently collected from the field. It is known that this predator can discriminate between kin and non-kin and prefers cannibalizing the latter, hence to construct lines with high relatedness we created isofemale lines of these two original strains. We subsequently tested to what extent the adult females and males of the original strains and the isofemale lines cannibalized conspecific larvae from the same strain/line in a closed system. Relatedness with the victims did not affect cannibalistic behavior, but males engaged more often in cannibalism than females, and females of the laboratory strain engaged more in cannibalism than those of the field strain, both in agreement with our ideas. We hypothesize that the difference in cannibalism between the two genders will increase when they have the alternative to disperse
Prey exploitation and dispersal strategies vary among natural populations of a predatory mite
When predators commonly overexploit local prey populations, dispersal drives the dynamics in local patches, which together form a metapopulation. Two extremes in a continuum of dispersal strategies are distinguished: the “Killer” strategy, where predators only start dispersing when all prey are eliminated, and the “Milker” strategy, in which predator dispersal occurs irrespective of prey availability. Theory shows that the Milker strategy is not evolutionarily stable if local populations are well connected by dispersal. Using strains of the predatory mite Phytoseiulus persimilis, collected from 11 native populations from coastal areas in Turkey and Sicily, we investigated whether these two strategies occur in nature. In small wind tunnels, we measured dispersal rates and population dynamics of all populations in a system consisting of detached rose leaves, spider mites (Tetranychus urticae) as prey, and P. persimilis. We found significant variation in the exploitation and dispersal strategies among predator populations, but none of the collected strains showed the extreme Killer or Milker strategy. The results suggest that there is genetic variation for prey exploitation and dispersal strategies. Thus, different dispersal strategies in the Milker–Killer continuum may be selected for under natural conditions. This may affect the predator–prey dynamics in local populations and is likely to determine persistence of predator–prey systems at the metapopulation level
Males cannibalise and females disperse in the predatory mite Phytoseiulus persimilis
Cannibalism is a widespread phenomenon in nature, often occurring when food is scarce, for example among predators that have overexploited a local prey population. Instead of cannibalising, predators can disperse, thereby avoiding being cannibalised or cannibalising related conspecifics, which results in inclusive fitness loss. Theory on prey exploitation in ephemeral predator-prey systems predicts that predators may be selected to display prudent predation by dispersing early, thus saving food for their remaining offspring. This is especially advantageous when average relatedness in the local population is high. Less prudent predators refrain from dispersing until all prey are exterminated. These prey exploitation strategies may also have repercussions for cannibalism, especially when it is driven by food shortage. We therefore investigated to what extent adult females and males cannibalise or disperse after prey have been exterminated locally. We used two lines of the haplodiploid predatory mite Phytoseiulus persimilis that were selected for early and late dispersal, respectively. In wind tunnels, we observed the cannibalistic and dispersal behaviour of individual adult predators of these lines on a rose leaf with only conspecific larvae as food. Both selection lines behaved similarly, indicating that selection on dispersal behaviour did not result in correlated effects on cannibalism behaviour. Male predators stayed significantly longer on the leaf and engaged more often in cannibalism than females. The results suggest that there might be gender-specific differences in cannibalistic tendency in relation to dispersal. Future theoretical studies on the evolution of cannibalism and dispersal should take differences between the genders into account
Lethal and Sublethal Effects of Contact Insecticides and Horticultural Oils on the Hibiscus Bud Weevil, <i>Anthonomus testaceosquamosus</i> Linell (Coleoptera: Curculionidae)
In 2017, the hibiscus bud weevil (HBW), Anthonomus testaceosquamosus Linell (Coleoptera: Curculionidae), was found outside of its native range of Mexico and Texas, infesting hibiscus plants in Florida. Therefore, we selected 21 different insecticide and horticultural oil products to evaluate their effects on the reproductive rate, feeding, and oviposition behavior of the HBW. In laboratory experiments, significant mortality was observed in adult weevils exposed to diflubenzuron-treated hibiscus leaves and buds, and hibiscus buds treated with diflubenzuron contained the fewest number of eggs and feeding/oviposition holes. Among horticultural oil products, significant mortality was only observed in experiments in which adult weevils were directly sprayed (direct experiments). Pyrethrins and spinetoram plus sulfoxaflor reduced the oviposition rate and caused significant mortality in direct experiments. Diflubenzuron, pyrethrins, spinetoram plus sulfoxaflor, and spirotetramat were further tested via contact toxicity experiments and greenhouse experiments. Contact toxicity experiments demonstrated that the tested insecticides (except diflubenzuron) were highly toxic to HBW adults. In greenhouse experiments, only those hibiscus plants treated with pyrethrins had significantly fewer feeding/oviposition holes and larvae within their flower buds when compared to control (water-treated) plants. These results constitute an important first step in the identification of effective chemical control options for the HBW