133 research outputs found

    Reversibility of cell surface label rearrangement

    Get PDF
    Cell surface labeling can cause rearrangements of randomly distributed membrane components. Removal of the label bound to the cell surface allows the membrane components to return to their original random distribution, demonstrating that label is necessary to maintain as well as to induce rearrangements. With scanning electron microscopy, the rearrangement of concanavalin A (con A) and ricin binding sites on LA-9 cells has been followed by means of hemocyanin, a visual label. The removal of con A from its binding sites at the cell surface with alpha- methyl mannoside, and the return of these sites to their original distribution are also followed in this manner. There are labeling differences with con A and ricin. Under some conditions, however, the same rearrangements are seen with both lectins. The disappearance of labeled sites from areas of ruffling activity is a major feature of the rearrangements seen. Both this ruffling activity and the rearrangement of label are sensitive to cytochalasin B, and ruffling activity, perhaps along with other cytochalasin-sensitive structure, may play a role in the rearrangements of labeled sites

    Ultrastructural Localization of Rhodopsin in the Vertebrate Retina

    Get PDF
    Early work by Dewey and collaborators has shown the distribution of rhodopsin in the frog retina. We have repeated these experiments on cow and mouse eyes using antibodies specific to rhodopsin alone. Bovine rhodopsin in emulphogene was purified on an hydroxyapatite column. The purity of this reagent was established by spectrophotometric criteria, by sodium dodecyl sulfate (SDS) gel electrophoresis, and by isoelectric focusing. This rhodopsin was used as an immunoadsorbent to isolate specific antibodies from the antisera of rabbits immunized with bovine rod outer segments solubilized in 2% digitonin. The antibody so prepared was shown by immunoelectrophoresis to be in the IgG class and did not cross-react with lipid extracts of bovine rod outer segments. Papain-digested univalent antibodies (Fab) coupled with peroxidase were used to label rhodopsin in formaldehyde-fixed bovine and murine retinas. In addition to the disk membranes, the plasma membrane of the outer segment, the connecting cilium, and part of the rod inner segment membrane were labeled. We observed staining on both sides of the rod outer segment plasma membrane and the disk membrane. Discrepancies were observed between results of immunolabeling experiments and observations of membrane particles seen in freeze-cleaved specimens. Our experiments indicate that the distribution of membrane particles in freeze cleaving experiments reflects the distribution of membrane proteins. Immunolabeling, on the other hand, can introduce several different types of artifact, unless controlled with extreme care

    Tip-sample interactions in atomic force microscopy: I. Modulating adhesion between silicon nitride and glass

    Get PDF
    An adhesive interaction between a silicon nitride AFM tip and glass substrate in water is described. This adhesion is in the range 5-40 nN, of which a large component is likely to be due to hydrogen bonding between the silanol groups on both surfaces. The interaction can be modulated by a variety of buffers commonly used in biochemical and biological research, including sodium phosphate, tris(hydroxymethyl)aminomethane, glycine, and N-2-hydroxyethyl-piperazine N'-2-ethanesulfonic acid. Using these buffers it appears that there are effects of ion concentration, ion type and pH on the measured adhesion. Of the conditions examined, phosphate was most effective at reducing adhesion and could be used at concentrations as low as 10 mM at neutral pH. The results demonstrate that the chemical interactions between tip and sample can be modulated, and provide a basis for designing conditions for imaging and manipulating biological molecules and structures

    Spatial and temporal patterns of distribution of the gap junction protein connexin43 during mouse gastrulation and organogenesis

    Get PDF
    Connexin43 (Cx43) is a member of the family of channel-forming proteins that make up the gap junction and are believed to provide pathways for cell-cell exchange of developmental signals. We have used immunofluorescence and confocal microscopy to characterize the patterns of distribution of Cx43 in postimplantation mouse embryos representing stages of development extending through gastrulation and the major period of organogenesis [through 13.5 days post coitum (dpc)]. We find that Cx43 is expressed early after implantation by the undifferentiated, pluripotent cells of the primitive embryonic ectoderm from which all tissues of the fetus are believed to be derived. As cells become committed to particular developmental pathways, there is a progressive restriction of Cx43 to specific areas and organ systems. The patterns are complex and not limited by germ layer of origin, although there is a clear preference for expression in ectodermal and, to a lesser extent, mesodermal derivatives. Expression in lens, retina, kidney, brain, pineal and pituitary glands is initiated early in organogenesis. In heart, the first clear signal for Cx43 appears in the ventricle at about 10 dpc and is only subsequently detected in the atrium at about 13-13.5 dpc. Particularly intriguing with regard to functional implications is the high level expression observed at sites of inductive interaction; the eye lens and optic cup, the infundibulum and the apical ectodermal ridge of the limb bud

    Molecular cloning and characterization of a new member of the gap junction gene family, connexin-31

    Get PDF
    A new member of the connexin gene family has been identified and designated rat connexin-31 (Cx31) based on its predicted molecular mass of 30,960 daltons. Cx31 is 270 amino acids long and is coded for by a single copy gene. It is expressed as a 1.7-kilobase mRNA that is detected in placenta, Harderian gland, skin, and eye. Cx31 is highly conserved and can be detected in species as distantly related to rat as Xenopus laevis. It exhibits extensive sequence similarity to the previously identified connexins, 58, 50, and 40% amino acid identity to Cx26, Cx32, and Cx43, respectively. When conservation of predicted phosphorylation sites is used to adjust the alignment of Cx31 to other connexins, a unique alignment of three predicted protein kinase C phosphorylation sites near the carboxyl terminus of Cx31 with three sites at the carboxyl terminus of Cx43 is revealed

    Expression of the gene for main intrinsic polypeptide (MIP): separate spatial distributions of MIP and beta-crystallin gene transcripts in rat lens development

    Get PDF
    The main intrinsic polypeptide (MIP) is the major protein present in the lens fiber cell membrane and is the product of a gene which, as far as is known, is expressed only in the lens. We have used in situ hybridization and immunofluorescence microscopy to characterize the expression of this gene during the course of development in the rat. At progressive stages of lens morphogenesis, we find that synthesis of the protein is closely tied to the accumulation of MIP mRNA in cells that are committed to terminal differentiation, first in the elongating presumptive primary lens fibers and later in the secondary fibers as they differentiate from the anterior epithelial cells. The transcripts accumulate in the basal cytoplasm of the primary fibers and in the cytoplasm which surrounds the cell nucleus in the secondary fibers. We have compared this pattern of expression with that of a gene for a cytoplasmic protein, beta-crystallin beta-A1/A3. In sharp contrast to the localized concentrations seen for the MIP mRNA, beta-A1/A3 transcripts are relatively uniformly distributed throughout the cytoplasm. Neither MIP nor crystallin gene appears to be transcriptionally active in the undifferentiated epithelial cell, but transcripts from the beta-A1/A3 gene appear earlier in fiber cell differentiation than do those from the gene for MIP

    Intercellular communication in normal and regenerating rat liver: a quantitative analysis

    Get PDF
    We have compared intercellular communication in the regenerating and normal livers of weanling rats. The electrophysiological studies were conducted at the edge of the liver, and we have found that here as elsewhere in the liver there is a dramatic decrease in the number and size of gap junctions during regeneration. The area of hepatocyte membrane occupied by gap junctions is reduced 100-fold 29-35 h after hepatectomy. By combining observations made with the scanning electron microscope with our freeze fracture data we have estimated the number of "communicating interfaces" (areas of contact between hepatocytes that include at least one gap junction) formed by hepatocytes in normal and regenerating liver. In normal liver a hepatocyte forms gap junctions with every hepatocyte it contacts (approximately 6). In regenerating liver a hepatocyte forms detectable gap junctions with, on average, only one other hepatocyte. Intercellular spread of fluorescent dye and electric current is reduced in regenerating as compared with normal liver. The incidence of electric coupling is reduced from 100% of hepatocyte pairs tested in control liver to 92% in regenerating liver. Analysis of the spatial dependence of electronic potentials indicates a substantial increase in intercellular resistance in regenerating liver. A quantitative comparison of our morphological and physiological data is complicated by tortuous pattern of current flow and by inhomogeneities in the liver during regeneration. Nevertheless we believe that our results are consistent with the hypothesis that gap junctions are aggregates of channels between cell interiors

    Major Loss of the 28-kD Protein of Gap Junction in Proliferating Hepatocytes

    Get PDF
    There is a reduction in the 28-kD gap junction protein detectable by immunofluorescence in livers of partially hepatectomized rats and in cultured hepatocytes stimulated to proliferate. By the coordinate use of antibodies directed to the hepatic junction protein (HJP28) and the use of a monoclonal antibody that recognizes bromodeoxyuridine (BrdU) incorporated into DNA, we have been able to study the relationship between detectable gap junction protein and cell division. Hepatocytes that label with BrdU in the regenerating liver and in cell culture show a significant reduction of HJP28. Cells that do not synthesize DNA, on the other hand, show normal levels and distribution of immunoreactive gap junction protein. We postulate that the quantitative changes in gap junction expression might play an important role in the control of proliferation in the liver

    Inhibition of gap junction and adherens junction assembly by connexin and A-CAM antibodies

    Get PDF
    We examined the roles of the extracellular domains of a gap junction protein and a cell adhesion molecule in gap junction and adherens junction formation by altering cell interactions with antibody Fab fragments. Using immunoblotting and immunocytochemistry we demonstrated that Novikoff cells contained the gap junction protein, connexin43 (Cx43), and the cell adhesion molecule, A-CAM (N-cadherin). Cells were dissociated in EDTA, allowed to recover, and reaggregated for 60 min in media containing Fab fragments prepared from a number of antibodies. We observed no cell-cell dye transfer 4 min after microinjection in 90% of the cell pairs treated with Fab fragments of antibodies for the first or second extracellular domain of Cx43, the second extracellular domain of connexin32 (Cx32) or A-CAM. Cell-cell dye transfer was detected within 30 s in cell pairs treated with control Fab fragments (pre-immune serum, antibodies to the rat major histocompatibility complex or the amino or carboxyl termii of Cx43). We observed no gap junctions by freeze-fracture EM and no adherens junctions by thin section EM between cells treated with the Fab fragments that blocked cell-cell dye transfer. Gap junctions were found on approximately 50% of the cells in control samples using freeze-fracture EM. We demonstrated with reaggregated Novikoff cells that: (a) functional interactions of the extracellular domains of the connexins were necessary for the formation of gap junction channels; (b) cell interactions mediated by A-CAM were required for gap junction assembly; and (c) Fab fragments of antibodies for A-CAM or connexin extracellular domains blocked adherens junction formation
    • …
    corecore