20 research outputs found

    Micro-RNAs, their target proteins, predispositions and the memory of filial imprinting.

    Get PDF
    Visual imprinting is a learning process whereby young animals come to prefer a visual stimulus after exposure to it (training). The intermediate medial mesopallium (IMM) in the domestic chick forebrain is critical for visual imprinting and contributes to molecular regulation of memory formation. We investigated the role of micro-RNAs (miRNAs) in such regulation. Twenty-four hours after training, miRNA spectra in the left IMM were compared between chicks with high preference scores (strong memory for imprinting stimulus), and chicks with low preference scores (weak memory for imprinting stimulus). Using criteria of significance and expression level, we chose gga-miR-130b-3p for further study and found that down-regulation correlated with learning strength. No effect was detected in posterior nidopallium, a region not involved in imprinting. We studied two targets of gga-miR-130b-3p, cytoplasmic polyadenylation element binding proteins 1 (CPEB-1) and 3 (CPEB-3), in two subcellular fractions (P2 membrane-mitochondrial and cytoplasmic) of IMM and posterior nidopallium. Only in the left IMM was a learning-related effect observed, in membrane CPEB-3. Variances from the regression with preference score and untrained chicks suggest that, in the IMM, gga-miR-130b-3p level reflects a predisposition, i.e. capacity to learn, whereas P2 membrane-mitochondrial CPEB-3 is up-regulated in a learning-specific way.Sh. Rustaveli National Science Foundation, Georgia (Grant 217592

    A Proteomic Study of Memory After Imprinting in the Domestic Chick.

    Get PDF
    The intermediate and medial mesopallium (IMM) of the domestic chick forebrain has previously been shown to be a memory system for visual imprinting. Learning-related changes occur in certain plasma membrane and mitochondrial proteins in the IMM. Two-dimensional gel electrophoresis/mass spectrometry has been employed to identify more comprehensively learning-related expression of proteins in the membrane-mitochondrial fraction of the IMM 24 h after training. We inquired whether amounts of these proteins in the IMM and a control region (posterior pole of the nidopallium, PPN) are correlated with a behavioral estimate of memory for the imprinting stimulus. Learning-related increases in amounts of the following proteins were found in the left IMM, but not the right IMM or the left or right PPN: (i) membrane cognin; (ii) a protein resembling the P32 subunit of splicing factor SF2; (iii) voltage-dependent anionic channel-1; (iv) dynamin-1; (v) heterogeneous nuclear ribonucleoprotein A2/B1. Learning-related increases in some transcription factors involved in mitochondrial biogenesis were also found, without significant change in mitochondrial DNA copy number. The results indicate that the molecular processes involved in learning and memory underlying imprinting include protein stabilization, increased mRNA trafficking, synaptic vesicle recycling, and specific changes in the mitochondrial proteome.BBSRC grants 8/S18043, BB/H018948/1, Isaac Newton Trust (McCabe). S. Rustaveli National Science Foundation grant 31/01; Ilia State University (Solomonia).This is the final version of the article. It first appeared from Frontiers via http://dx.doi.org/10.3389/fnbeh.2015.0031

    Src and Memory: A Study of Filial Imprinting and Predispositions in the Domestic Chick.

    Get PDF
    Visual imprinting is a learning process whereby young animals come to prefer a visual stimulus after exposure to it (training). The available evidence indicates that the intermediate medial mesopallium (IMM) in the domestic chick forebrain is a site of memory formation during visual imprinting. We have studied the role of Src, an important non-receptor tyrosine kinase, in memory formation. Amounts of total Src (Total-Src) and its two phosphorylated forms, tyrosine-416 (activated, 416P-Src) and tyrosine-527 (inhibited, 527P-Src), were measured 1 and 24 h after training in the IMM and in a control brain region, the posterior pole of nidopallium (PPN). One hour after training, in the left IMM, we observed a positive correlation between the amount of 527P-Src and learning strength that was attributable to learning, and there was also a positive correlation between 416P-Src and learning strength that was attributable to a predisposition to learn readily. Twenty-four hours after training, the amount of Total-Src increased with learning strength in both the left and right IMM, and amount of 527P-Src increased with learning strength only in the left IMM; both correlations were attributable to learning. A further, negative, correlation between learning strength and 416P-Src/Total-Src in the left IMM reflected a predisposition to learn. No learning-related changes were found in the PPN control region. We suggest that there are two pools of Src; one of them in an active state and reflecting a predisposition to learn, and the second one in an inhibited condition, which increases as a result of learning. These two pools may represent two or more signaling pathways, namely, one pathway downstream of Src activated by tyrosine-416 phosphorylation and another upstream of Src, keeping the enzyme in an inactivated state via phosphorylation of tyrosine-527

    A proteomic study of memory after imprinting in the domestic chick

    No full text
    The intermediate and medial mesopallium (IMM) of the domestic chick forebrain has previously been shown to be a memory system for visual imprinting. Learning-related changes occur in certain plasma membrane and mitochondrial proteins in the IMM. Two-dimensional gel electrophoresis/mass spectrometry has been employed to identify more comprehensively learning-related expression of proteins in the membrane-mitochondrial fraction of the IMM 24 h after training. We inquired whether amounts of these proteins in the IMM and a control region (posterior pole of the nidopallium, PPN) are correlated with a behavioural estimate of memory for the imprinting stimulus. Learning-related increases in amounts of the following proteins were found in the left IMM, but not the right IMM or the left or right PPN: (i) membrane cognin; (ii) a protein resembling the P32 subunit of splicing factor SF2; (iii) voltage-dependent anionic channel-1; (iv) dynamin-1; (v) heterogeneous nuclear ribonucleoprotein A2/B1. Learning-related increases in some transcription factors involved in mitochondrial biogenesis were also found, without significant change in mitochondrial DNA copy number. The results indicate that the molecular processes involved in learning and memory underlying imprinting include protein stabilization, increased mRNA trafficking, synaptic vesicle recycling and specific changes in the mitochondrial proteome

    Molecular mechanisms of memory in imprinting.

    Get PDF
    Converging evidence implicates the intermediate and medial mesopallium (IMM) of the domestic chick forebrain in memory for a visual imprinting stimulus. During and after imprinting training, neuronal responsiveness in the IMM to the familiar stimulus exhibits a distinct temporal profile, suggesting several memory phases. We discuss the temporal progression of learning-related biochemical changes in the IMM, relative to the start of this electrophysiological profile. c-fos gene expression increases <15 min after training onset, followed by a learning-related increase in Fos expression, in neurons immunopositive for GABA, taurine and parvalbumin (not calbindin). Approximately simultaneously or shortly after, there are increases in phosphorylation level of glutamate (AMPA) receptor subunits and in releasable neurotransmitter pools of GABA and taurine. Later, the mean area of spine synapse post-synaptic densities, N-methyl-D-aspartate receptor number and phosphorylation level of further synaptic proteins are elevated. After ∼ 15 h, learning-related changes in amounts of several synaptic proteins are observed. The results indicate progression from transient/labile to trophic synaptic modification, culminating in stable recognition memory.We gratefully acknowledge the support of the BBSRC, Isaac Newton Trust, Royal Society, S. Rustaveli National Science Foundation (Project 01/31) and Wellcome Trust.This is the final version. It was first published by Elsevier at http://www.sciencedirect.com/science/article/pii/S0149763414002401

    Metabolomic Fingerprint of Mecp2-Deficient Mouse Cortex: Evidence for a Pronounced Multi-Facetted Metabolic Component in Rett Syndrome

    No full text
    Using unsupervised metabolomics, we defined the complex metabolic conditions in the cortex of a mouse model of Rett syndrome (RTT). RTT, which represents a cause of mental and cognitive disabilities in females, results in profound cognitive impairment with autistic features, motor disabilities, seizures, gastrointestinal problems, and cardiorespiratory irregularities. Typical RTT originates from mutations in the X-chromosomal methyl-CpG-binding-protein-2 (Mecp2) gene, which encodes a transcriptional modulator. It then causes a deregulation of several target genes and metabolic alterations in the nervous system and peripheral organs. We identified 101 significantly deregulated metabolites in the Mecp2-deficient cortex of adult male mice; 68 were increased and 33 were decreased compared to wildtypes. Pathway analysis identified 31 mostly upregulated metabolic pathways, in particular carbohydrate and amino acid metabolism, key metabolic mitochondrial/extramitochondrial pathways, and lipid metabolism. In contrast, neurotransmitter-signaling is dampened. This metabolic fingerprint of the Mecp2-deficient cortex of severely symptomatic mice provides further mechanistic insights into the complex RTT pathogenesis. The deregulated pathways that were identified—in particular the markedly affected amino acid and carbohydrate metabolism—confirm a complex and multifaceted metabolic component in RTT, which in turn signifies putative therapeutic targets. Furthermore, the deregulated key metabolites provide a choice of potential biomarkers for a more detailed rating of disease severity and disease progression

    Interplay between NMDA receptor modulation and Na/K ATPase activity under the social isolation-induced stress in the hippocampus of male rats

    No full text
    32-38Living organisms exhibit heightened susceptibility to prolonged social isolation, leading to the onset of diverse pathological processes culminating in various diseases. The nervous system, notably sensitive to such alterations, may manifest neurodegenerative changes. Of particular interest in these conditions is the role of neurotransmitters within the central nervous system (CNS). Thus, our focus was directed towards the glutamate NMDA receptor, known for its pivotal involvement in synaptic plasticity and memory regulation. Understanding the interplay between glutamate and its receptors, notably the NMDA receptor, with the Na+/K+-ATPase - an essential player in cellular homeostasis - remains insufficiently explored, especially under social isolation. Consequently, our study aimed to elucidate this relationship within the male rat brain's hippocampus. Experimental subjects underwent either 30 days of isolation or remained in a communal cage as control animals. Assessing the expression levels of glutamate NMDA-receptor and Na+/K+-ATPase subunits via the western blot method. Under prolonged social isolation, a surge in the phosphorylated NR2B subunits of the NMDA receptor indicated heightened receptor activation. Simultaneously, a substantial reduction in Na+/K+-ATPase activity was observed, potentially linked to decreased α1-subunit expression. These alterations hint at the NMDA receptor's activation and subsequent changes triggered by elevated intracellular Ca2+ as likely causes for the diminished Na+/K+-ATPase activity amidst prolonged social isolation
    corecore