5 research outputs found

    DNS of Multiple Bubble Growth and Droplet Formation in Superheated Liquids

    Get PDF
    Flash boiling can occur in rocket thrusters used for orbital manoeuvring of spacecraft as the cryogenic propellants are injected into the vacuum of space. For reliable ignition, a precise control of the atomization process is required as atomization and mixing of fuel and oxidizer are crucial for the subsequent combustion process. This work focuses on the microscopic process leading to the primary break-up of a liquid oxygen jet, caused by homogeneous nucleation and growth of vapour bubbles in superheated liquid. Although large levels of superheat can be achieved, sub-critical injection conditions ensure distinct gas and liquid phases with a large density ratio. Direct numerical simulations (DNS) are performed using the multiphase solver FS3D. The code solves the incompressible Navier-Stokes equations using the Volume of Fluid (VOF) method and PLIC reconstruction for the phase interface treatment. The interfaces are tracked as multiple bubbles grow, deform and coalesce, leading to the formation of a spray. The evaporation rate at the interface and approximate vapour properties are based on pre-computed solutions resolving the thermal boundary layer surrounding isolated bubbles, while liquid inertia and surface tension effects are expected to play a major role in the final spray characteristics which can only be captured by DNS. Simulations with regular arrays of bubbles demonstrate how the initial bubble spacing and thermodynamic conditions lead to distinct spray characteristics and droplet size distributions

    DNS of multiple bubble growth and droplet formation in superheated liquids

    Get PDF
    Flash boiling can occur in rocket thrusters used for orbital manoeuvring of spacecraft as the cryogenic propellants are injected into the vacuum of space. For reliable ignition, a precise control of the atomization process is required as atomization and mixing of fuel and oxidizer are crucial for the subsequent combustion process. This work focuses on the microscopic process leading to the primary break-up of a liquid oxygen jet, caused by homogeneous nucleation and growth of vapour bubbles in superheated liquid. Although large levels of superheat can be achieved, sub-critical injection conditions ensure distinct gas and liquid phases with a large density ratio. Direct numerical simulations (DNS) are performed using the multiphase solver FS3D. The code solves the incompressible Navier-Stokes equations using the Volume of Fluid (VOF) method and PLIC reconstruction for the phase interface treatment. The interfaces are tracked as multiple bubbles grow, deform and coalesce, leading to the formation of a spray. The evaporation rate at the interface and approximate vapour properties are based on pre-computed solutions resolving the thermal boundary layer surrounding isolated bubbles, while liquid inertia and surface tension effects are expected to play a major role in the final spray characteristics which can only be captured by DNS. Simulations with regular arrays of bubbles demonstrate how the initial bubble spacing and thermodynamic conditions lead to distinct spray characteristics and droplet size distributions

    Direct Numerical Simulation of Water Droplets in Turbulent Flow

    No full text
    Details on the fall speeds of raindrops are essential in both applications and natural events, such as rain-rate retrieval and soil erosion. Here, we examine the influence of turbulence on the terminal velocity of two water drops of different sizes. For the first time, computations of droplets in turbulent surroundings are conducted with a direct numerical simulation code based on a volume of fluid method. Both the drop surface deformation and internal circulation are captured. The turbulence intensity at the inflow area, as well as the turbulence length scale are varied. In turbulent flow, we find a decline in the terminal velocities for both drops. Based on the study of the wake flow characteristics and drop surface deformation, the decrease in the terminal velocity is found to be directly linked to a shortening of the wake recirculation region resulting from an earlier and more drastic increase in the turbulence kinetic energy in the shear layer. The turbulent surroundings trigger substantial rises in the drop axis ratio amplitude and a slight increase in the drop oscillation frequency, but barely influence the time-averaged drop axis length
    corecore