41 research outputs found

    Gene set analysis exploiting the topology of a pathway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently, a great effort in microarray data analysis is directed towards the study of the so-called gene sets. A gene set is defined by genes that are, somehow, functionally related. For example, genes appearing in a known biological pathway naturally define a gene set. The gene sets are usually identified from a priori biological knowledge. Nowadays, many bioinformatics resources store such kind of knowledge (see, for example, the Kyoto Encyclopedia of Genes and Genomes, among others). Although pathways maps carry important information about the structure of correlation among genes that should not be neglected, the currently available multivariate methods for gene set analysis do not fully exploit it.</p> <p>Results</p> <p>We propose a novel gene set analysis specifically designed for gene sets defined by pathways. Such analysis, based on graphical models, explicitly incorporates the dependence structure among genes highlighted by the topology of pathways. The analysis is designed to be used for overall surveillance of changes in a pathway in different experimental conditions. In fact, under different circumstances, not only the expression of the genes in a pathway, but also the strength of their relations may change. The methods resulting from the proposal allow both to test for variations in the strength of the links, and to properly account for heteroschedasticity in the usual tests for differential expression.</p> <p>Conclusions</p> <p>The use of graphical models allows a deeper look at the components of the pathway that can be tested separately and compared marginally. In this way it is possible to test single components of the pathway and highlight only those involved in its deregulation.</p

    Human Cell Chips: Adapting DNA Microarray Spotting Technology to Cell-Based Imaging Assays

    Get PDF
    Here we describe human spotted cell chips, a technology for determining cellular state across arrays of cells subjected to chemical or genetic perturbation. Cells are grown and treated under standard tissue culture conditions before being fixed and printed onto replicate glass slides, effectively decoupling the experimental conditions from the assay technique. Each slide is then probed using immunofluorescence or other optical reporter and assayed by automated microscopy. We show potential applications of the cell chip by assaying HeLa and A549 samples for changes in target protein abundance (of the dsRNA-activated protein kinase PKR), subcellular localization (nuclear translocation of NFκB) and activation state (phosphorylation of STAT1 and of the p38 and JNK stress kinases) in response to treatment by several chemical effectors (anisomycin, TNFα, and interferon), and we demonstrate scalability by printing a chip with ∼4,700 discrete samples of HeLa cells. Coupling this technology to high-throughput methods for culturing and treating cell lines could enable researchers to examine the impact of exogenous effectors on the same population of experimentally treated cells across multiple reporter targets potentially representing a variety of molecular systems, thus producing a highly multiplexed dataset with minimized experimental variance and at reduced reagent cost compared to alternative techniques. The ability to prepare and store chips also allows researchers to follow up on observations gleaned from initial screens with maximal repeatability

    Time-dependent effects of imatinib in human leukaemia cells: a kinetic NMR-profiling study

    Get PDF
    The goal of this study was to evaluate the time course of metabolic changes in leukaemia cells treated with the Bcr-Abl tyrosine kinase inhibitor imatinib. Human Bcr-Abl+ K562 cells were incubated with imatinib in a dose-escalating manner (starting at 0.1 μM with a weekly increase of 0.1 μM imatinib) for up to 5 weeks. Nuclear magnetic resonance spectroscopy and liquid-chromatography mass spectrometry were performed to assess a global metabolic profile, including glucose metabolism, energy state, lipid metabolism and drug uptake, after incubation with imatinib. Initially, imatinib treatment completely inhibited the activity of Bcr-Abl tyrosine kinase, followed by the inhibition of cell glycolytic activity and glucose uptake. This was accompanied by the increased mitochondrial activity and energy production. With escalating imatinib doses, the process of cell death rapidly progressed. Phosphocreatine and NAD+ concentrations began to decrease, and mitochondrial activity, as well as the glycolysis rate, was further reduced. Subsequently, the synthesis of lipids as necessary membrane precursors for apoptotic bodies was accelerated. The concentrations of the Kennedy pathway intermediates, phosphocholine and phosphatidylcholine, were reduced. After 4 weeks of exposure to imatinib, the secondary necrosis associated with decrease in the mitochondrial and glycolytic activity occurred and was followed by a shutdown of energy production and cell death. In conclusion, monitoring of metabolic changes in cells exposed to novel signal transduction modulators supplements molecular findings and provides further mechanistic insights into longitudinal changes of the mitochondrial and glycolytic pathways of oncogenesis

    NF-κB-to-AP-1 Switch: A Mechanism Regulating Transition From Endothelial Barrier Injury to Repair in Endotoxemic Mice

    Get PDF
    Endothelial barrier disruption is a hallmark of multiple organ injury (MOI). However, mechanisms governing the restoration of endothelial barrier function are poorly understood. Here, we uncovered an NF-κB-to-AP-1 switch that regulates the transition from barrier injury to repair following endotoxemic MOI. Endothelial NF-κB mediates barrier repair by inhibiting endothelial cell (EC) apoptosis. Blockade of endothelial NF-κB pathway activated the activator protein (AP)-1 pathway (NF-κB-to-AP-1 switch), which compensated for the anti-apoptotic and barrier-repair functions of NF-κB. The NF-κB-to-AP-1 switch occurred at 24 hours (injury to repair transition phase), but not at 48 hours (repair phase) post-LPS, and required an inflammatory signal within the endothelium. In the absence of an inflammatory signal, the NF-κB-to-AP-1 switch failed, resulting in enhanced EC apoptosis, augmented endothelial permeability, and impeded transition from barrier injury to recovery. The NF-κB-to-AP-1 switch is a protective mechanism to ensure timely transition from endothelial barrier injury to repair, accelerating barrier restoration following MOI
    corecore