465 research outputs found

    Trace Finite Element Methods for PDEs on Surfaces

    Full text link
    In this paper we consider a class of unfitted finite element methods for discretization of partial differential equations on surfaces. In this class of methods known as the Trace Finite Element Method (TraceFEM), restrictions or traces of background surface-independent finite element functions are used to approximate the solution of a PDE on a surface. We treat equations on steady and time-dependent (evolving) surfaces. Higher order TraceFEM is explained in detail. We review the error analysis and algebraic properties of the method. The paper navigates through the known variants of the TraceFEM and the literature on the subject

    Error analysis of a space-time finite element method for solving PDEs on evolving surfaces

    Get PDF
    In this paper we present an error analysis of an Eulerian finite element method for solving parabolic partial differential equations posed on evolving hypersurfaces in Rd\mathbb{R}^d, d=2,3d=2,3. The method employs discontinuous piecewise linear in time -- continuous piecewise linear in space finite elements and is based on a space-time weak formulation of a surface PDE problem. Trial and test surface finite element spaces consist of traces of standard volumetric elements on a space-time manifold resulting from the evolution of a surface. We prove first order convergence in space and time of the method in an energy norm and second order convergence in a weaker norm. Furthermore, we derive regularity results for solutions of parabolic PDEs on an evolving surface, which we need in a duality argument used in the proof of the second order convergence estimate

    A trace finite element method for a class of coupled bulk-interface transport problems

    Get PDF
    In this paper we study a system of advection-diffusion equations in a bulk domain coupled to an advection-diffusion equation on an embedded surface. Such systems of coupled partial differential equations arise in, for example, the modeling of transport and diffusion of surfactants in two-phase flows. The model considered here accounts for adsorption-desorption of the surfactants at a sharp interface between two fluids and their transport and diffusion in both fluid phases and along the interface. The paper gives a well-posedness analysis for the system of bulk-surface equations and introduces a finite element method for its numerical solution. The finite element method is unfitted, i.e., the mesh is not aligned to the interface. The method is based on taking traces of a standard finite element space both on the bulk domains and the embedded surface. The numerical approach allows an implicit definition of the surface as the zero level of a level-set function. Optimal order error estimates are proved for the finite element method both in the bulk-surface energy norm and the L2L^2-norm. The analysis is not restricted to linear finite elements and a piecewise planar reconstruction of the surface, but also covers the discretization with higher order elements and a higher order surface reconstruction

    Approximation of the determinant of large sparse symmetric positive definite matrices

    Get PDF
    This paper is concerned with the problem of approximating the determinant of A for a large sparse symmetric positive definite matrix A. It is shown that an efficient solution of this problem is obtained by using a sparse approximate inverse of A. The method is explained and theoretical properties are discussed. A posteriori error estimation techniques are presented. Furthermore, results of numerical experiments are given which illustrate the performance of this new method

    A Trace Finite Element Method for Vector-Laplacians on Surfaces

    Full text link
    We consider a vector-Laplace problem posed on a 2D surface embedded in a 3D domain, which results from the modeling of surface fluids based on exterior Cartesian differential operators. The main topic of this paper is the development and analysis of a finite element method for the discretization of this surface partial differential equation. We apply the trace finite element technique, in which finite element spaces on a background shape-regular tetrahedral mesh that is surface-independent are used for discretization. In order to satisfy the constraint that the solution vector field is tangential to the surface we introduce a Lagrange multiplier. We show well-posedness of the resulting saddle point formulation. A discrete variant of this formulation is introduced which contains suitable stabilization terms and is based on trace finite element spaces. For this method we derive optimal discretization error bounds. Furthermore algebraic properties of the resulting discrete saddle point problem are studied. In particular an optimal Schur complement preconditioner is proposed. Results of a numerical experiment are included

    The Loss Rank Principle for Model Selection

    Full text link
    We introduce a new principle for model selection in regression and classification. Many regression models are controlled by some smoothness or flexibility or complexity parameter c, e.g. the number of neighbors to be averaged over in k nearest neighbor (kNN) regression or the polynomial degree in regression with polynomials. Let f_D^c be the (best) regressor of complexity c on data D. A more flexible regressor can fit more data D' well than a more rigid one. If something (here small loss) is easy to achieve it's typically worth less. We define the loss rank of f_D^c as the number of other (fictitious) data D' that are fitted better by f_D'^c than D is fitted by f_D^c. We suggest selecting the model complexity c that has minimal loss rank (LoRP). Unlike most penalized maximum likelihood variants (AIC,BIC,MDL), LoRP only depends on the regression function and loss function. It works without a stochastic noise model, and is directly applicable to any non-parametric regressor, like kNN. In this paper we formalize, discuss, and motivate LoRP, study it for specific regression problems, in particular linear ones, and compare it to other model selection schemes.Comment: 16 page

    An Eulerian space-time finite element method for diffusion problems on evolving surfaces

    Get PDF
    In this paper, we study numerical methods for the solution of partial differential equations on evolving surfaces. The evolving hypersurface in Rd\Bbb{R}^d defines a dd-dimensional space-time manifold in the space-time continuum Rd+1\Bbb{R}^{d+1}. We derive and analyze a variational formulation for a class of diffusion problems on the space-time manifold. For this variational formulation new well-posedness and stability results are derived. The analysis is based on an inf-sup condition and involves some natural, but non-standard, (anisotropic) function spaces. Based on this formulation a discrete in time variational formulation is introduced that is very suitable as a starting point for a discontinuous Galerkin (DG) space-time finite element discretization. This DG space-time method is explained and results of numerical experiments are presented that illustrate its properties.Comment: 22 pages, 5 figure

    An Eulerian finite element method for tangential Navier-Stokes equations on evolving surfaces

    Full text link
    The paper introduces a geometrically unfitted finite element method for the numerical solution of the tangential Navier--Stokes equations posed on a passively evolving smooth closed surface embedded in R3\mathbb{R}^3. The discrete formulation employs finite difference and finite elements methods to handle evolution in time and variation in space, respectively. A complete numerical analysis of the method is presented, including stability, optimal order convergence, and quantification of the geometric errors. Results of numerical experiments are also provided
    • …
    corecore