We introduce a new principle for model selection in regression and
classification. Many regression models are controlled by some smoothness or
flexibility or complexity parameter c, e.g. the number of neighbors to be
averaged over in k nearest neighbor (kNN) regression or the polynomial degree
in regression with polynomials. Let f_D^c be the (best) regressor of complexity
c on data D. A more flexible regressor can fit more data D' well than a more
rigid one. If something (here small loss) is easy to achieve it's typically
worth less. We define the loss rank of f_D^c as the number of other
(fictitious) data D' that are fitted better by f_D'^c than D is fitted by
f_D^c. We suggest selecting the model complexity c that has minimal loss rank
(LoRP). Unlike most penalized maximum likelihood variants (AIC,BIC,MDL), LoRP
only depends on the regression function and loss function. It works without a
stochastic noise model, and is directly applicable to any non-parametric
regressor, like kNN. In this paper we formalize, discuss, and motivate LoRP,
study it for specific regression problems, in particular linear ones, and
compare it to other model selection schemes.Comment: 16 page