46 research outputs found

    Obstacles on the way to the clinical visualisation of beta cells: looking for the Aeneas of molecular imaging to navigate between Scylla and Charybdis

    Get PDF
    For more than a decade, researchers have been trying to develop non-invasive imaging techniques for the in vivo measurement of viable pancreatic beta cells. However, in spite of intense research efforts, only one tracer for positron emission tomography (PET) imaging is currently under clinical evaluation. To many diabetologists it may remain unclear why the imaging world struggles to develop an effective method for non-invasive beta cell imaging (BCI), which could be useful for both research and clinical purposes. Here, we provide a concise overview of the obstacles and challenges encountered on the way to such BCI, in both native and transplanted islets. We discuss the major difficulties posed by the anatomical and cell biological features of pancreatic islets, as well as the chemical and physical limits of the main imaging modalities, with special focus on PET, SPECT and MRI. We conclude by indicating new avenues for future research in the field, based on several remarkable recent results

    Illuminating the life of GPCRs

    Get PDF
    The investigation of biological systems highly depends on the possibilities that allow scientists to visualize and quantify biomolecules and their related activities in real-time and non-invasively. G-protein coupled receptors represent a family of very dynamic and highly regulated transmembrane proteins that are involved in various important physiological processes. Since their localization is not confined to the cell surface they have been a very attractive "moving target" and the understanding of their intracellular pathways as well as the identified protein-protein-interactions has had implications for therapeutic interventions. Recent and ongoing advances in both the establishment of a variety of labeling methods and the improvement of measuring and analyzing instrumentation, have made fluorescence techniques to an indispensable tool for GPCR imaging. The illumination of their complex life cycle, which includes receptor biosynthesis, membrane targeting, ligand binding, signaling, internalization, recycling and degradation, will provide new insights into the relationship between spatial receptor distribution and function. This review covers the existing technologies to track GPCRs in living cells. Fluorescent ligands, antibodies, auto-fluorescent proteins as well as the evolving technologies for chemical labeling with peptide- and protein-tags are described and their major applications concerning the GPCR life cycle are presented

    Drug-induced amino acid deprivation as strategy for cancer therapy

    Full text link

    Design of Multifunctional Nanomedical Systems

    No full text
    Multifunctional nanoparticles hold great promise for drug/gene delivery and simultaneous diagnostics and therapeutics ( theragnostics ) including use of core materials that provide in vivo imaging and opportunities for externally modulated therapeutic interventions. Multilayered nanoparticles can act as nanomedical systems with on-board molecular programming done through the chemistry of highly specialized layers to accomplish complex and potentially decision-making tasks. The targeting process itself is a multi-step process consisting of initial cell recognition through cell surface receptors, cell entry through the membrane in a manner to prevent undesired alterations of the nanomedical system, re-targeting to the appropriate sub-region of the cell where the therapeutic package can be localized, and potentially control of that therapeutic process through feedback systems using molecular biosensors. This paper describes a bionanoengineering design process in which sophisticated nanomedical platform systems can be designed for diagnosis and treatment of disease. The feasibility of most of these subsystems has been demonstrated, but the full integration of these interacting sub-components remains a challenge for the field. Specific examples of sub-components developed for specific applications are described
    corecore