6 research outputs found

    Clock transition by continuous dynamical decoupling of a three-level system

    Get PDF
    We present a novel continuous dynamical decoupling scheme for the construction of a robust qubit in a three-level system. By means of a clock transition adjustment, we first show how robustness to environmental noise is achieved, while eliminating drive-noise, to first-order. We demonstrate this scheme with the spin sub-levels of the NV-centre's electronic ground state. By applying drive fields with moderate Rabi frequencies, the drive noise is eliminated and an improvement of 2 orders of magnitude in the coherence time is obtained compared to the pure dephasing time. We then show how the clock transition adjustment can be tuned to eliminate also the second-order effect of the environmental noise with moderate drive fields. A further improvement of more than 1 order of magnitude in the coherence time is expected and confirmed by simulations. Hence, our scheme prolongs the coherence time towards the lifetime-limit using a relatively simple experimental setup.Comment: 7 pages, 5 figure

    Narrow-bandwidth sensing of high-frequency fields with continuous dynamical decoupling

    Get PDF
    State-of-the-art methods for sensing weak AC fields are only efficient in the low frequency domain. Here, Stark et al. demonstrate a sensing scheme that is capable of probing high frequencies through continuous dynamical coupling by applying it to a nitrogen-vacancy centre in diamond

    Optically induced dynamic nuclear spin polarisation in diamond

    Get PDF
    The sensitivity of Magnetic Resonance Imaging (MRI) depends strongly on nuclear spin polarisation and, motivated by this observation, dynamical nuclear spin polarisation has recently been applied to enhance MRI protocols (Kurhanewicz, J., et al., Neoplasia 13, 81 (2011)). Nuclear spins associated with the 13 C carbon isotope (nuclear spin I = 1/2) in diamond possess uniquely long spin lattice relaxation times (Reynhardt, E.C. and G.L. High, Prog. in Nuc. Mag. Res. Sp. 38, 37 (2011)) If they are present in diamond nanocrystals, especially when strongly polarised, they form a promising contrast agent for MRI. Current schemes for achieving nuclear polarisation, however, require cryogenic temperatures. Here we demonstrate an efficient scheme that realises optically induced 13 C nuclear spin hyperpolarisation in diamond at room temperature and low ambient magnetic field. Optical pumping of a Nitrogen-Vacancy (NV) centre creates a continuously renewable electron spin polarisation which can be transferred to surrounding 13 C nuclear spins. Importantly for future applications we also realise polarisation protocols that are robust against an unknown misalignment between magnetic field and crystal axis.Comment: This is the revision submitted to NJ
    corecore