68 research outputs found

    S6K1 and 4E-BP1 Are Independent Regulated and Control Cellular Growth in Bladder Cancer

    Get PDF
    Aberrant activation and mutation status of proteins in the phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and the mitogen activated protein kinase (MAPK) signaling pathways have been linked to tumorigenesis in various tumors including urothelial carcinoma (UC). However, anti-tumor therapy with small molecule inhibitors against mTOR turned out to be less successful than expected. We characterized the molecular mechanism of this pathway in urothelial carcinoma by interfering with different molecular components using small chemical inhibitors and siRNA technology and analyzed effects on the molecular activation status, cell growth, proliferation and apoptosis. In a majority of tested cell lines constitutive activation of the PI3K was observed. Manipulation of mTOR or Akt expression or activity only regulated phosphorylation of S6K1 but not 4E-BP1. Instead, we provide evidence for an alternative mTOR independent but PI3K dependent regulation of 4E-BP1. Only the simultaneous inhibition of both S6K1 and 4E-BP1 suppressed cell growth efficiently. Crosstalk between PI3K and the MAPK signaling pathway is mediated via PI3K and indirect by S6K1 activity. Inhibition of MEK1/2 results in activation of Akt but not mTOR/S6K1 or 4E-BP1. Our data suggest that 4E-BP1 is a potential new target molecule and stratification marker for anti cancer therapy in UC and support the consideration of a multi-targeting approach against PI3K, mTORC1/2 and MAPK

    Categorical versus continuous circulating tumor cell enumeration as early surrogate marker for therapy response and prognosis during docetaxel therapy in metastatic prostate cancer patients

    Get PDF
    Background: Circulating tumor cell (CTCs) counts might serve as early surrogate marker for treatment efficacy in metastatic castration-resistant prostate cancer (mCRPC) patients. We prospectively assessed categorical and continuous CTC-counts for their utility in early prediction of radiographic response, progression-free (PFS) and overall survival (OS) in mCRPC patients treated with docetaxel. Methods: CTC-counts were assessed in 122 serial samples, as continuous or categorical (= 5 CTCs) variables, at baseline (q0) and after 1 (q1),4 (q4) and 10 (q10) cycles of docetaxel (3-weekly, 75 mg/m2) in 33 mCRPC patients. Treatment response (TR) was defined as non-progressive (non-PD) and progressive disease (PD),by morphologic RECIST or clinical criteria at q4 and q10. Binary logistic and Cox proportional hazards regression analyses were used as statistical methods. Results: Categorical CTC-count status predicted PD at q4 already after one cycle (q1) and after 4 cycles (q4) of chemotherapy with an odds ratio (OR) of 14.9 (p = 0.02) and 18.0 (p = 0.01). Continuous CTC-values predicted PD only at q4 (OR 1.04, p = 0.048). Regarding PFS, categorical CTC-counts at q1 were independent prognostic markers with a hazard ratio (HR) of 3.85 (95 % CI 1.1-13.8, p = 0.04) whereas early continuous CTC-values at q1 failed significance (HR 1.02, 95 % CI 0.99-1.05, p = 0.14). For OS early categorical and continuous CTC-counts were independent prognostic markers at q1 with a HR of 3.0 (95 % CI 1.6-15.7, p = 0.007) and 1.02 (95 % CI 1.0-1.040, p = 0.04). Conclusions: Categorical CTC-count status is an early independent predictor for TR, PFS and OS only 3 weeks following treatment initiation with docetaxel whereas continuous CTC-counts were an inconsistent surrogate marker in mCRPC patients. For clinical practice, categorical CTC-counts may provide complementary information towards individualized treatment strategies with early prediction of treatment efficacy and optimized sequential treatment

    Expression of human beta-defensins 1 and 2 in kidneys with chronic bacterial infection

    Get PDF
    BACKGROUND: Constitutive expression and localization of antimicrobial human β-defensin-1 (HBD-1) in human kidneys as a potential mechanism of antimicrobial defense has been previously reported. Inducible expression of human β-defensin-2 (HBD-2) has been described in various epithelial organs but not for the urogenital tract. METHODS: We investigated the gene- and protein expression of HBD-1 and HBD-2 by reverse transcriptase-polymerase chain reaction, and immunohistochemistry in 15 normal human kidney samples and 15 renal tissues with chronic bacterial infection. Additionally, cell culture experiments were performed to study HBD gene expression by real-time RT-PCR in response to inflammatory cytokines TNFα and IL-1β as well as lipopolysaccharide from Gram-negative bacteria. RESULTS: Constitutive HBD-1 gene- and protein expression was detected in normal renal tissue and kidneys with chronic infection. As a novel finding, inducible HBD-2 gene- and protein expression was demonstrated in tubulus epithelia with chronic infection but not in normal renal tissue. In pyelonephritic kidneys HBD-1 and HBD-2 expression showed a similar pattern of localizaton in distal tubules, loops of Henle and in collecting ducts of the kidney. Furthermore, real-time RT-PCR of kidney derived cell lines stimulated with inflammatory agents TNF-α, IL-1β and LPS revealed a strong increase in relative HBD-2 transcription level and also a slight increase in relative HBD-1 transcription level. CONCLUSIONS: Upregulated HBD-2 expression in renal tubulus epithelium indicates a role of a wider range of human defensins for antimicrobial host defense in the urogenital tract than previously recognized

    Antimicrobial peptides of the Cecropin-family show potent antitumor activity against bladder cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study evaluated the cytotoxic and antiproliferative efficacy of two well-characterized members of the Cecropin-family of antimicrobial peptides against bladder tumor cells and benign fibroblasts.</p> <p>Methods</p> <p>The antiproliferative and cytotoxic potential of the Cecropins A and B was quantified by colorimetric WST-1-, BrdU- and LDH-assays in four bladder cancer cell lines as well as in murine and human fibroblast cell lines. IC<sub>50 </sub>values were assessed by logarithmic extrapolation, representing the concentration at which cell viability was reduced by 50%. Scanning electron microscopy (SEM) was performed to visualize the morphological changes induced by Cecropin A and B in bladder tumor cells and fibroblasts.</p> <p>Results</p> <p>Cecropin A and B inhibit bladder cancer cell proliferation and viability in a dose-dependent fashion. The average IC<sub>50 </sub>values of Cecropin A and B against all bladder cancer cell lines ranged between 73.29 μg/ml and 220.05 μg/ml. In contrast, benign fibroblasts were significantly less or not at all susceptible to Cecropin A and B. Both Cecropins induced an increase in LDH release from bladder tumor cells whereas benign fibroblasts were not affected. SEM demonstrated lethal membrane disruption in bladder cancer cells as opposed to fibroblasts.</p> <p>Conclusion</p> <p>Cecropin A and B exert selective cytotoxic and antiproliferative efficacy in bladder cancer cells while sparing targets of benign murine or human fibroblast origin. Both peptides may offer novel therapeutic strategies for the treatment of bladder cancer with limited cytotoxic effects on benign cells.</p

    Chemotherapy in the post-MVAC era: the case for adjuvant chemotherapy

    No full text
    corecore