169 research outputs found

    The Red Sequence of High-Redshift Clusters: a Comparison with Cosmological Galaxy Formation Models

    Full text link
    We compare the results from a semi-analytic model of galaxy formation with spectro-photometric observations of distant galaxy clusters observed in the range 0.8< z< 1.3. We investigate the properties of their red sequence (RS) galaxies and compare them with those of the field at the same redshift. In our model we find that i) a well-defined, narrow RS is obtained already by z= 1.2; this is found to be more populated than the field RS, analogously to what observed and predicted at z=0; ii) the predicted U-V rest-frame colors and scatter of the cluster RS at z=1.2 have average values of 1 and 0.15 respectively, with a cluster-to-cluster variance of 0.2 and 0.06, respectively. The scatter of the RS of cluster galaxies is around 5 times smaller than the corresponding field value; iii) when the RS galaxies are considered, the mass growth histories of field and cluster galaxies at z=1.2 are similar, with 90 % of the stellar mass of RS galaxies at z=1.2 already formed at cosmic times t=2.5 Gyr, and 50 % at t=1 Gyr; v) the predicted distribution of stellar ages of RS galaxies at z=1.2 peaks at 3.7 Gyr for both cluster and field populations; however, for the latter the distribution is significantly skewed toward lower ages. When compared with observations, the above findings show an overall consistency, although the average value 0.07 of the observed cluster RS scatter (U-V colors) at z=1.2 is smaller than the corresponding model central value. We discuss the physical origin and the significance of the above results in the framework of cosmological galaxy formation.Comment: 14 pages, accepted for publication in ApJ. Updated one referenc

    Early-type Galaxies at z ~ 1.3. II. Masses and Ages of Early-type Galaxies in Different Environments and Their Dependence on Stellar Population Model Assumptions

    Get PDF
    We have derived masses and ages for 79 early-type galaxies (ETGs) in different environments at z ~ 1.3 in the Lynx supercluster and in the GOODS/CDF-S field using multi-wavelength (0.6-4.5 ÎŒm; KPNO, Palomar, Keck, Hubble Space Telescope, Spitzer) data sets. At this redshift the contribution of the thermally pulsing asymptotic giant branch (TP-AGB) phase is important for ETGs, and the mass and age estimates depend on the choice of the stellar population model used in the spectral energy distribution fits. We describe in detail the differences among model predictions for a large range of galaxy ages, showing the dependence of these differences on age. Current models still yield large uncertainties. While recent models from Maraston and Charlot & Bruzual offer better modeling of the TP-AGB phase with respect to less recent Bruzual & Charlot models, their predictions do not often match. The modeling of this TP-AGB phase has a significant impact on the derived parameters for galaxies observed at high redshift. Some of our results do not depend on the choice of the model: for all models, the most massive galaxies are the oldest ones, independent of the environment. When using the Maraston and Charlot & Bruzual models, the mass distribution is similar in the clusters and in the groups, whereas in our field sample there is a deficit of massive (M ≳ 10^(11) M_☉) ETGs. According to those last models, ETGs belonging to the cluster environment host on average older stars with respect to group and field populations. This difference is less significant than the age difference in galaxies of different masses

    Is gluten the only culprit for non-celiac gluten/wheat sensitivity?

    Get PDF
    The gluten-free diet (GFD) has gained increasing popularity in recent years, supported by marketing campaigns, media messages and social networks. Nevertheless, real knowledge of gluten and GF-related implications for health is still poor among the general population. The GFD has also been suggested for non-celiac gluten/wheat sensitivity (NCG/WS), a clinical entity characterized by intestinal and extraintestinal symptoms induced by gluten ingestion in the absence of celiac disease (CD) or wheat allergy (WA). NCG/WS should be regarded as an “umbrella term” including a variety of different conditions where gluten is likely not the only factor responsible for triggering symptoms. Other compounds aside from gluten may be involved in the pathogenesis of NCG/WS. These include fructans, which are part of fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs), amylase trypsin inhibitors (ATIs), wheat germ agglutinin (WGA) and glyphosate. The GFD might be an appropriate dietary approach for patients with self-reported gluten/wheat-dependent symptoms. A low-FODMAP diet (LFD) should be the first dietary option for patients referring symptoms more related to FODMAPs than gluten/wheat and the second-line treatment for those with self-reported gluten/wheat-related symptoms not responding to the GFD. A personalized approach, regular follow-up and the help of a skilled dietician are mandatory

    The importance of major mergers in the build up of stellar mass in brightest cluster galaxies at z=1

    Get PDF
    Recent independent results from numerical simulations and observations have shown that brightest cluster galaxies (BCGs) have increased their stellar mass by a factor of almost two between z~0.9 and z~0.2. The numerical simulations further suggest that more than half this mass is accreted through major mergers. Using a sample of 18 distant galaxy clusters with over 600 spectroscopically confirmed cluster members between them, we search for observational evidence that major mergers do play a significant role. We find a major merger rate of 0.38 +/- 0.14 mergers per Gyr at z~1. While the uncertainties, which stem from the small size of our sample, are relatively large, our rate is consistent with the results that are derived from numerical simulations. If we assume that this rate continues to the present day and that half of the mass of the companion is accreted onto the BCG during these mergers, then we find that this rate can explain the growth in the stellar mass of the BCGs that is observed and predicted by simulations. Major mergers therefore appear to be playing an important role, perhaps even the dominant one, in the build up of stellar mass in these extraordinary galaxies.Comment: 15 pages, 6 figures, accepted for publication in MNRAS. Reduced data will be made available through the ESO archiv

    Candidate Clusters of Galaxies at z > 1.3 Identified in the Spitzer South Pole Telescope Deep Field Survey

    Get PDF
    We present 279 galaxy cluster candidates at z > 1.3 selected from the 94 deg^2 Spitzer South Pole Telescope Deep Field (SSDF) survey. We use a simple algorithm to select candidate high-redshift clusters of galaxies based on Spitzer/IRAC mid-infrared data combined with shallow all-sky optical data. We identify distant cluster candidates adopting an overdensity threshold that results in a high purity (80%) cluster sample based on tests in the Spitzer Deep, Wide-Field Survey of the Boötes field. Our simple algorithm detects all three 1.4 < z ≀ 1.75 X-ray detected clusters in the Boötes field. The uniqueness of the SSDF survey resides not just in its area, one of the largest contiguous extragalactic fields observed with Spitzer, but also in its deep, multi-wavelength coverage by the South Pole Telescope (SPT), Herschel/SPIRE, and XMM-Newton. This rich data set will allow direct or stacked measurements of Sunyaev-Zel'dovich effect decrements or X-ray masses for many of the SSDF clusters presented here, and enable a systematic study of the most distant clusters on an unprecedented scale. We measure the angular correlation function of our sample and find that these candidates show strong clustering. Employing the COSMOS/UltraVista photometric catalog in order to infer the redshift distribution of our cluster selection, we find that these clusters have a comoving number density N_c = (0.7^(+6.3)_(0.6)) x 10^(-7) h^3 Mpc^(-3) and a spatial clustering correlation scale length r_ 0 = (32 ± 7) h^(–1) Mpc. Assuming our sample is comprised of dark matter halos above a characteristic minimum mass, M _(min), we derive that at z = 1.5 these clusters reside in halos larger than M_(min) = 1.5^(+0.9)_(0.7) x 10^(14) h^(-1) M_⊙. We find that the mean mass of our cluster sample is equal to M_(mean) = 1.9^(+1.0)_(0.8) x 10^(14) h^(-1) M_⊙ ; thus, our sample contains the progenitors of present-day massive galaxy clusters

    Early-type Galaxies at z ~ 1.3. III. On the Dependence of Formation Epochs and Star Formation Histories on Stellar Mass and Environment

    Get PDF
    We study the environmental dependence of stellar population properties at z ~ 1.3. We derive galaxy properties (stellar masses, ages, and star formation histories) for samples of massive, red, passive early-type galaxies (ETGs) in two high-redshift clusters, RXJ0849+4452 and RXJ0848+4453 (with redshifts of z = 1.26 and 1.27, respectively), and compare them with those measured for the RDCS1252.9–2927 cluster at z = 1.24 and with those measured for a similarly mass-selected sample of field contemporaries drawn from the GOODS-South field. Robust estimates of the aforementioned parameters have been obtained by comparing a large grid of composite stellar population models with extensive 8- to 10-band photometric coverage, from the rest-frame far-ultraviolet to the infrared. We find no variations of the overall stellar population properties among the different samples of cluster ETGs. However, when comparing cluster versus field stellar population properties we find that, even if the ages are similar and depend only on galaxy mass, the ones in the field do employ longer timescales to assemble their final mass. We find that, approximately 1 Gyr after the onset of star formation, the majority (75%) of cluster galaxies have already assembled most (>80%) of their final mass, while, by the same time, fewer (35%) field ETGs have. Thus, we conclude that while galaxy mass regulates the timing of galaxy formation, the environment regulates the timescale of their star formation histories

    Galaxy protocluster candidates at 1.6<z<2

    Full text link
    We present a study of protoclusters associated with high redshift radio galaxies. We imaged MRC1017-220 (z=1.77) and MRC0156-252 (z=2.02) using the near-infrared wide-field (7.5'x7.5') imager VLT/HAWK-I in the Y, H and Ks bands. We present the first deep Y-band galaxy number counts within a large area (200 arcmin2). We then develop a purely near-infrared colour selection technique to isolate galaxies at 1.6<z<3 that may be associated with the two targets, dividing them into (i) red passively evolving or dusty star-forming galaxies or (ii) blue/star-formation dominated galaxies with little or no dust. Both targeted fields show an excess of star-forming galaxies with respect to control fields. No clear overdensity of red galaxies is detected in the surroundings of MRC1017-220 although the spatial distribution of the red galaxies resembles a filament-like structure within which the radio galaxy is embedded. In contrast, a significant overdensity of red galaxies is detected in the field of MRC0156-252, ranging from a factor of 2-3 times the field density at large scales (2.5Mpc, angular distance) up to a factor of 3-4 times the field density within a 1Mpc radius of the radio galaxy. Half of these red galaxies have colours consistent with red sequence models at z~2, with a large fraction being bright (Ks<21.5, i.e. massive). In addition, we also find a small group of galaxies within 5" of MRC0156-252 suggesting that the radio galaxy has multiple companions within ~50 kpc. We conclude that the field of MRC0156-252 shows many remarkable similarities with the well-studied protocluster surrounding PKS1138-262 (z=2.16) suggesting that MRC0156-252 is associated with a galaxy protocluster at z~2.Comment: accepted for publication in A&A, 16 pages, 13 figures, 3 table

    VLT and ACS observations of RDCS J1252.9-2927: dynamical structure and galaxy populations in a massive cluster at z=1.237

    Get PDF
    We present results from an extensive spectroscopic survey, carried out with VLT FORS, and from an extensive multiwavelength imaging data set from the HST Advanced Camera for Surveys and ground based facilities, of the cluster of galaxies RDCS J1252.9-2927. We have spectroscopically confirmed 38 cluster members in the redshift range 1.22 < z < 1.25. A cluster median redshift of z=1.237 and a rest-frame velocity dispersion of 747^{+74}_{-84} km/s are obtained. Using the 38 confirmed redshifts, we were able to resolve, for the first time at z > 1, kinematic structure. The velocity distribution, which is not Gaussian at the 95% confidence level, is consistent with two groups that are also responsible for the projected east-west elongation of the cluster. The groups are composed of 26 and 12 galaxies with velocity dispersions of 486^{+47}_{-85} km/s and 426^{+57}_{-105} km/s, respectively. The elongation is also seen in the intracluster gas and the dark matter distribution. This leads us to conclude that RDCS J1252.9-2927 has not yet reached a final virial state. We extend the analysis of the color-magnitude diagram of spectroscopic members to more than 1 Mpc from the cluster center. The scatter and slope of non-[OII]-emitting cluster members in the near-IR red sequence is similar to that seen in clusters at lower redshift. Furthermore, most of the galaxies with luminosities greater than ~ K_s*+1.5 do not show any [OII], indicating that these more luminous, redder galaxies have stopped forming stars earlier than the fainter, bluer galaxies. Our observations provide detailed dynamical and spectrophotometric information on galaxies in this exceptional high-redshift cluster, delivering an in-depth view of structure formation at this epoch only 5 Gyr after the Big Bang.Comment: 29 pages. 16 figures. ApJ accepted. Tables 2,3 and 5, figure 1 and the full figure 5 will be available in the paper and electronic editions from ApJ. v2: minor corrections to the abstract and text to match the Journal's versio
    • 

    corecore