74 research outputs found

    Aurora on Ganymede

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98774/1/jgra50122.pd

    New low electron flux facility in the 0 to 3.5 MeV range for the study of induced signal in JUICE instruments: UVS and MAJIS measurements

    Full text link
    We designed and built a new test facility to investigate signal induced by electrons in the 0-3.5 MeV in the JUICE UVS and MAJIS instruments. The facility uses radioisotopes sources to produce low flux of electrons (< 6000 electrons/cm².s). We present the facility, its capabilities and the results of measurements on UVS and MAJIS

    An Analytic Function of Lunar Surface Temperature for Exospheric Modeling

    Get PDF
    We present an analytic expression to represent the lunar surface temperature as a function of Sun-state latitude and local time. The approximation represents neither topographical features nor compositional effects and therefore does not change as a function of selenographic latitude and longitude. The function reproduces the surface temperature measured by Diviner to within +/-10 K at 72% of grid points for dayside solar zenith angles of less than 80, and at 98% of grid points for nightside solar zenith angles greater than 100. The analytic function is least accurate at the terminator, where there is a strong gradient in the temperature, and the polar regions. Topographic features have a larger effect on the actual temperature near the terminator than at other solar zenith angles. For exospheric modeling the effects of topography on the thermal model can be approximated by using an effective longitude for determining the temperature. This effective longitude is randomly redistributed with 1 sigma of 4.5deg. The resulting ''roughened'' analytical model well represents the statistical dispersion in the Diviner data and is expected to be generally useful for future models of lunar surface temperature, especially those implemented within exospheric simulations that address questions of volatile transport

    HST/STIS Ultraviolet Imaging of Polar Aurora on Ganymede

    Get PDF
    We report new observations of the spectrum of Ganymede in the spectral range 1160 - 1720 A made with the Space Telescope Imaging Spectrograph (STIS) on HST on 1998 October 30. The observations were undertaken to locate the regions of the atomic oxygen emissions at 1304 and 1356 A, previously observed with the GHRS on HST, that Hall et al. (1998) claimed indicated the presence of polar aurorae on Ganymede. The use of the 2" wide STIS slit, slightly wider than the disk diameter of Ganymede, produced objective spectra with images of the two oxygen emissions clearly separated. The OI emissions appear in both hemispheres, at latitudes above 40 degrees, in accordance with recent Galileo magnetometer data that indicate the presence of an intrinsic magnetic field such that Jovian magnetic field lines are linked to the surface of Ganymede only at high latitudes. Both the brightness and relative north-south intensity of the emissions varied considerably over the four contiguous orbits (5.5 hours) of observation, presumably due to the changing Jovian plasma environment at Ganymede. However, the observed longitudinal non-uniformity in the emission brightness at high latitudes, particularly in the southern hemisphere, and the lack of pronounced limb brightening near the poles are difficult to understand with current models. In addition to observed solar HI Lyman-alpha reflected from the disk, extended Lyman-alpha emission resonantly scattered from a hydrogen exosphere is detected out to beyond two Ganymede radii from the limb, and its brightness is consistent with the Galileo UVS measurements of Barth et al. (1997).Comment: 7 pages, 4 figures, accepted for publication in ApJ, June 1, 200

    Probing Ganymede's atmosphere with HST Lyα\alpha images in transit of Jupiter

    Full text link
    We report results from far-ultraviolet observations by the Hubble Space Telescope of Jupiter's largest moon Ganymede transiting across the planet's dayside hemisphere. {Within} a targeted campaign on 9 September 2021 two exposures were taken during one transit passage to probe for attenuation of Jupiter's hydrogen Lyman-α\alpha dayglow above the moon limb. The background dayglow is slightly attenuated over an extended region around Ganymede, with stronger attenuation in the second exposure when Ganymede was near the planet's center. In the first exposure when the moon was closer to Jupiter's limb, the effects from the Ganymede corona are hardly detectable, likely because the Jovian Lyman-α\alpha dayglow is spectrally broader and less intense at this viewing geometry. The obtained vertical H column densities of around (1−2)×1012(1-2)\times 10^{12}~cm−2^{-2} are consistent with previous results. Constraining angular variability around Ganymede's disk, we derive an upper limit on a local H2_2O column density of (2−3)×1016(2-3)\times 10^{16}~cm−2^{-2}, such as could arise from outgassing plumes in regions near the observed moon limb

    Constraints on Europa's water group torus from HST/COS observations

    Full text link
    In-situ plasma measurements as well as remote mapping of energetic neutral atoms around Jupiter provide indirect evidence that an enhancement of neutral gas is present near the orbit of the moon Europa. Simulations suggest that such a neutral gas torus can be sustained by escape from Europa's atmosphere and consists primarily of molecular hydrogen, but the neutral gas torus has not yet been measured directly through emissions or in-situ. Here we present observations by the Cosmic Origins Spectrograph of the Hubble Space Telescope (HST/COS) from 2020 and 2021, which scanned the equatorial plane between 8 and 10 planetary radii west of Jupiter. No neutral gas emissions are detected. We derive upper limits on the emissions and compare these to modelled emissions from electron impact and resonant scattering using a Europa torus Monte Carlo model for the neutral gases. The comparison supports the previous findings that the torus is dilute and primarily consists of molecular hydrogen. A detection of sulfur ion emissions radially inward of the Europa orbit is consistent with emissions from the extended Io torus and with sulfur ion fractional abundances as previously detected

    Mapping the Brightness of Ganymede's Ultraviolet Aurora Using Hubble Space Telescope Observations

    Full text link
    peer reviewedWe analyze Hubble Space Telescope observations of Ganymede made with the Space Telescope Imaging Spectrograph between 1998 and 2017 to generate a brightness map of Ganymede's oxygen emission at 1,356 Å. Our Mercator projected map demonstrates that the brightness along Ganymede's northern and southern auroral ovals strongly varies with longitude. To quantify this variation around Ganymede, we investigate the brightness averaged over 36°-wide longitude corridors centered around the sub-Jovian (0° W), leading (90° W), anti-Jovian (180° W), and trailing (270° W) central longitudes. In the northern hemisphere, the brightness of the auroral oval is 3.7 ± 0.4 times lower in the sub-Jovian and anti-Jovian corridors compared to the trailing and leading corridors. The southern oval is overall brighter than the northern oval, and only 2.5 ± 0.2 times fainter on the sub- and anti-Jovian corridors compared to the trailing and leading corridors. This demonstrates that Ganymede's auroral ovals are strongly structured in auroral crescents on the leading side (plasma downstream side) and on the trailing side (plasma upstream side). We also find that the brightness is not symmetric with respect to the 270° meridian, but shifted by ∼20° towards the Jovian-facing hemisphere. Our map will be useful for subsequent studies to understand the processes that generate the aurora in Ganymede's non-rotationally driven, sub-Alfvénic magnetosphere

    Astro2020 Science White Paper: Triggered High-Priority Observations of Dynamic Solar System Phenomena

    Get PDF
    Unexpected dynamic phenomena have surprised solar system observers in the past and have led to important discoveries about solar system workings. Observations at the initial stages of these events provide crucial information on the physical processes at work. We advocate for long-term/permanent programs on ground-based and space-based telescopes of all sizes - including Extremely Large Telescopes (ELTs) - to conduct observations of high-priority dynamic phenomena, based on a predefined set of triggering conditions. These programs will ensure that the best initial dataset of the triggering event are taken; separate additional observing programs will be required to study the temporal evolution of these phenomena. While not a comprehensive list, the following are notional examples of phenomena that are rare, that cannot be anticipated, and that provide high-impact advances to our understandings of planetary processes. Examples include: new cryovolcanic eruptions or plumes on ocean worlds; impacts on Jupiter, Saturn, Uranus, or Neptune; extreme eruptions on Io; convective superstorms on Saturn, Uranus, or Neptune; collisions within the asteroid belt or other small-body populations; discovery of an interstellar object passing through our solar system (e.g. 'Oumuamua); and responses of planetary atmospheres to major solar flares or coronal mass ejections.Comment: Astro2020 white pape
    • …
    corecore