4 research outputs found

    Stratification of a population of intracranial aneurysms using blood flow metrics.

    Get PDF
    Indices of the intra-aneurysm hemodynamic environment have been proposed as potentially indicative of their longitudinal outcome. To be useful, the indices need to be used to stratify large study populations and tested against known outcomes. The first objective was to compile the diverse hemodynamic indices reported in the literature. Furthermore, as morphology is often the only patient-specific information available in large population studies, the second objective was to assess how the ranking of aneurysms in a population is affected by the use of steady flow simulation as an approximation to pulsatile flow simulation, even though the former is clearly non-physiological. Sixteen indices of aneurysmal hemodynamics reported in the literature were compiled and refined where needed. It was noted that, in the literature, these global indices of flow were always time-averaged over the cardiac cycle. Steady and pulsatile flow simulations were performed on a population of 198 patient-specific and 30 idealised aneurysm models. All proposed hemodynamic indices were estimated and compared between the two simulations. It was found that steady and pulsatile flow simulations had a strong linear dependence (r ≥ 0.99 for 14 indices; r ≥ 0.97 for 2 others) and rank the aneurysms in an almost identical fashion (ρ ≥ 0.99 for 14 indices; ρ ≥ 0.96 for other 2). When geometry is the only measured piece of information available, stratification of aneurysms based on hemodynamic indices reduces to being a physically grounded substitute for stratification of aneurysms based on morphology. Under such circumstances, steady flow simulations may be just as effective as pulsatile flow simulation for estimating most key indices currently reported in the literature

    Hemodynamics and natural history outcome in unruptured intracranial aneurysms

    No full text
    There is increasing interest in assessing the role of hemodynamics in aneurysm growth and rupture mechanism. Identification of the indicators of rupture risk can prove very valuable in the clinical management of patients. If rupture risk of aneurysms can be predicted, immediate preemptive treatments can be done for the high risk patients whereas others can avoid the risky intervention. Retrospective studies have been performed in the past to filter out indices that differentiate ruptured aneurysms from unruptured aneurysms. However, these differences may not necessarily translate to differences between aneurysms that present unruptured but fork towards growth/rupture and unruptured aneurysms that are invariably stable. The hypothesis of the present study is that hemodynamic indices of unruptured aneurysms when they first presented can be used to predict their longitudinal outcome. A prospective longitudinal cohort study was designed to test this hypothesis. Four clinical centers participated in this study and a total of 198 aneurysms were recruited. These aneurysms were chosen by the physicians to be kept under watchful waiting. Three-dimensional models of aneurysms and their contiguous vasculature generated using the initial scans of patients were used for computational fluid dynamic (CFD) simulations. Both pulsatile and steady flow analyses were performed for each patient. By collating all the prominent hemodynamic indices available in aneurysm literature and developing a few new indices, 25 hemodynamic indices were estimated for each subject. For statistical analysis, it was hypothesized a priori that low wall shear area is different between stable and unstable aneurysms. All other indices were tested in a post-hoc manner. The longitudinal outcome information of these patients was recorded at the clinical centers and the author was blinded until all analyses were complete. Aneurysms that grew during the follow up period were labeled as "grown" and otherwise they were called "stable" by the radiologists. After the hemodynamic analysis was complete, a non-parametric Mann Whitney U test was performed to determine if any index can statistically differentiate the two groups ("grown" versus "stable"). It was found that none of the indices distinguished the two groups with statistical significance. Comparison of the steady and pulsatile flow analysis suggested that the patient population is stratified in the same order by an index, irrespective of whether the index is computed using a steady or pulsatile flow simulation. Pearson correlation coefficient was obtained between basic geometric indices and hemodynamic indices of this population. No strong correlation was found in between morphology and hemodynamics, suggesting uniqueness of the hemodynamic indices. The hypothesis motivating the present study is that aneurysm blood flow based indices can be used as prognostic indicators of growth and/or rupture risk. This study is the first to analyze intracranial aneurysm hemodynamics of a large cohort in a longitudinal prospective manner. Results of the present study indicate that quantitative hemodynamics cannot be used to predict the longitudinal outcome of an aneurysm. Further studies are needed to gain additional clinical insights

    Assessment of image-derived risk factors for natural course of unruptured cerebral aneurysms

    No full text
    The goal of this prospective longitudinal study was to test whether image-derived metrics can differentiate unruptured aneurysms that will become unstable (grow and/or rupture) from those that will remain stable. One hundred seventy-eight patients harboring 198 unruptured cerebral aneurysms for whom clinical observation and follow-up with imaging surveillance was recommended at 4 clinical centers were prospectively recruited into this study. Imaging data (predominantly CT angiography) at initial presentation was recorded. Computational geometry was used to estimate numerous metrics of aneurysm morphology that described the size and shape of the aneurysm. The nonlinear, finite element method was used to estimate uniform pressure-induced peak wall tension. Computational fluid dynamics was used to estimate blood flow metrics. The median follow-up period was 645 days. Longitudinal outcome data on these aneurysm patients-whether their aneurysms grew or ruptured (the unstable group) or remained unchanged (the stable group)-was documented based on follow-up at 4 years after the beginning of recruitment. Twenty aneurysms (10.1%) grew, but none ruptured. One hundred forty-nine aneurysms (75.3%) remained stable and 29 (14.6%) were lost to follow-up. None of the metrics-including aneurysm size, nonsphericity index, peak wall tension, and low shear stress area-differentiated the stable from unstable groups with statistical significance. The findings in this highly selected group do not support the hypothesis that image-derived metrics can predict aneurysm growth in patients who have been selected for observation and imaging surveillance. If aneurysm shape is a significant determinant of invasive versus expectant management, selection bias is a key limitation of this study
    corecore