
Thomas Jefferson University
Jefferson Digital Commons

Department of Neurosurgery Faculty Papers Department of Neurosurgery

7-27-2015

Stratification of a population of intracranial
aneurysms using blood flow metrics.
Rohini Retarekar
University of Iowa

Manasi Ramachandran
University of Iowa

Benjamin Berkowitz
University of Iowa

Robert E. Harbaugh
Penn State University

David Hasan
University of Iowa

See next page for additional authors

Let us know how access to this document benefits you
Follow this and additional works at: http://jdc.jefferson.edu/neurosurgeryfp

Part of the Biomedical Engineering and Bioengineering Commons, and the Medicine and Health
Sciences Commons

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas
Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly
publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and
interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in
Department of Neurosurgery Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact:
JeffersonDigitalCommons@jefferson.edu.

Recommended Citation
Retarekar, Rohini; Ramachandran, Manasi; Berkowitz, Benjamin; Harbaugh, Robert E.; Hasan,
David; Rosenwasswer, Robert H.; Ogilvy, Christopher S.; and Raghavan, Madhavan L.,
"Stratification of a population of intracranial aneurysms using blood flow metrics." (2015).
Department of Neurosurgery Faculty Papers. Paper 80.
http://jdc.jefferson.edu/neurosurgeryfp/80

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Jefferson Digital Commons

https://core.ac.uk/display/46976066?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://jdc.jefferson.edu?utm_source=jdc.jefferson.edu%2Fneurosurgeryfp%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://jdc.jefferson.edu/neurosurgeryfp?utm_source=jdc.jefferson.edu%2Fneurosurgeryfp%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://jdc.jefferson.edu/neurosurgery?utm_source=jdc.jefferson.edu%2Fneurosurgeryfp%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://jeffline.jefferson.edu/Education/surveys/jdc.cfm
http://jdc.jefferson.edu/neurosurgeryfp?utm_source=jdc.jefferson.edu%2Fneurosurgeryfp%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/229?utm_source=jdc.jefferson.edu%2Fneurosurgeryfp%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=jdc.jefferson.edu%2Fneurosurgeryfp%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=jdc.jefferson.edu%2Fneurosurgeryfp%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.jefferson.edu/university/teaching-learning.html/


Authors
Rohini Retarekar, Manasi Ramachandran, Benjamin Berkowitz, Robert E. Harbaugh, David Hasan, Robert H.
Rosenwasswer, Christopher S. Ogilvy, and Madhavan L. Raghavan

This article is available at Jefferson Digital Commons: http://jdc.jefferson.edu/neurosurgeryfp/80

http://jdc.jefferson.edu/neurosurgeryfp/80?utm_source=jdc.jefferson.edu%2Fneurosurgeryfp%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages


Stratification of a Population of Intracranial Aneurysms Using 
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Abstract

Indices of the intra-aneurysm hemodynamic environment have been proposed as potentially 

indicative of their longitudinal outcome. To be useful, the indices need to be used to stratify large 

study populations and tested against known outcomes. The first objective was to compile the 

diverse hemodynamic indices reported in the literature. Further, since morphology is often the 

only patient-specific information available in large population studies, the second objective was to 

assess how the ranking of aneurysms in a population is affected by the use of steady flow 

simulation as an approximation to pulsatile flow simulation even though the former is clearly non-

physiological. Sixteen indices of aneurysmal hemodynamics reported in the literature were 

compiled and refined where needed. It was noted that in the literature, these global indices of flow 

were always time-averaged over the cardiac cycle. Steady and pulsatile flow simulations were 

performed on a population of 198 patient specific and 30 idealized aneurysm models. All proposed 

hemodynamic indices were estimated and compared between the 2 simulations. It was found that, 

steady and pulsatile flow simulations had a strong linear dependence (r ≥ 0.99 for 14 indices; r ≥ 

0.97 for two others) and rank the aneurysms in an almost identical fashion (ρ≥ 0.99 for 14 indices; 

ρ≥ 0.96 for other two). When geometry is the only measured piece of information available, 

stratification of aneurysms based on hemodynamic indices reduces to being a physically grounded 

substitute for stratification of aneurysms based on morphology. Under such circumstances, steady 

flow simulations may just be as effective as pulsatile flow simulation for estimating most key 

indices currently reported in the literature.
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Introduction

Simulations of blood flow in intracranial aneurysms (IA) have been reported for populations 

of human subjects [1-9]. It has been proposed that certain characteristics of blood flow in 

unruptured IAs may provide clues to their eventual outcome – whether they remain stable, 

grow and/or rupture. While visualizations of simulations may help us understand and gain 

insights into the nature of flow, to be of practical value (say, as a predictive factor of 

outcome), such simulations need to be quantified with scalar indices. These metrics may 

then be evaluated in adequately powered and appropriately chosen human subject 

populations. In the literature, blood flow simulations have been reported with varying 

degrees of assumptions. The results have been quantified with scalar indices that quantify 

diverse aspects of flow on a global basis. Such indices include those based on the 

distribution of wall shear stress[3-5], its spatial or temporal gradients[5], energy loss[7], 

pressure differentials[10], nature of inflow or outflow into aneurysm sac[1, 5, 6, 8] and 

prevalence of and nature of flow vortices[1, 5, 11]. We found about 20 such indices in the 

literature. The first objective of this study is to collect and summarize all reported indices of 

IA hemodynamics with improvements to their definitions where necessary.

Ultimately, the main use for such indices is for testing their prognostic value in human 

subject population. In the literature, most of these indices were computed based on pulsatile 

flow simulations in patient-specific aneurysms reconstructed from noninvasive volumetric 

imaging data. Although the simulations of transient blood flow seemingly provide in-depth 

information of intra-aneurysmal hemodynamics, the simulations are often computationally 

expensive and demand additional measurements such as the temporal variations in boundary 

conditions – an area where studies involving large populations inevitably make uniform 

population-wide assumptions. Moreover, in a large population study, the only patient 

specific information readily available is the morphology of aneurysm. Consequently, 

differences in hemodynamics indices within study populations have to merely be reflective 

of differences in morphological differences such as the angulation of the sac with respect to 

parent flow, the bottleneck effect at the neck of the sac, etc. Therefore, it is conceivable that 

if the primary objective is to stratify a population of aneurysms according to their 

hemodynamic behavior, a simpler and faster method of steady flow simulation can turn out 

to be as effective as transient flow simulation. Manageable computational cost will permit 

ever larger study populations to be accommodated into studies and consequently, greater 

statistical power in the testing of hypotheses. Of course, a steady flow simulation will not 

provide temporal information as pulsatile simulations and a comparison of the results will 

leave the former short. But do the loss of this additional information when employing steady 

flow simulation have any practical impact – say, in stratifying subjects any differently than 

that when pulsatile simulations are employed? This is the question motivating the second 

objective of this study. In this study, we compared the effectiveness of steady versus 

pulsatile flow simulations in stratifying aneurysms using two types of study populations: 1) 

a large population of patient-specific unruptured intracranial aneurysms with available sizes, 

shapes and locations; and 2) a population of idealized intracranial aneurysms spanning the 

common range of sizes, shapes and locations.
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Methods

Hemodynamic Indices

A literature survey was performed to determine the indices that have been used to 

characterize cerebral aneurysm hemodynamics. Where necessary, we modified these 

existing indices and developed additional new ones. The indices were then organized within 

groups depending upon the nature of blood flow through the aneurysm they attempt to 

quantify:

A. Wall shear stress (WSS) based indices: WSS has long been proposed as a 

mechanobiological driver of wall remodeling [12]. To be effective as a prognostic 

indicator however, this spatially and temporally varying quantity should be reduced 

to an index. The following WSS related indices have been reported in the literature:

1. Temporally averaged, spatial mean WSS in the sac region[5], WSSave

2. Temporally averaged, spatial maximum WSS in the sac region[5], WSSmax

3. Temporally averaged, spatial 99th percentile WSS in the sac region, 

WSS99. When large study populations are involved, this index may capture 

the essence of WSSmax, while avoiding the pitfalls of localized spikes due 

to model artifacts if any[13].

4. Low wall shear area, LSA: Under the premise that abnormally low WSS 

may promote aneurysmal growth [2] and therefore undesirable, the surface 

area covered by low WSS has been proposed as an index. However, what 

constitutes “abnormally low” is not consistent between investigators. 

Whereas Jou et al. and later Xiang et al. defined “abnormally low WSS” 

as less than 10% of mean parent vessel wall shear stress [3, 5], Cebral et 

al. defined “abnormally low WSS” as less than 1 standard deviation (SD) 

of the near vessel (vessels within 1 cm from the neck area) wall shear 

stress [6]. Of the two, the latter definition better accounts for the spread of 

WSS in the parent vessel while prescribing what is “abnormally low” (for 

e.g., for aneurysms at the siphon of the ICA, the parent vessel WSS likely 

spans a rather wide range such that even 10% of the mean may not be 

justifiably judged to be “abnormally low”). By employing parametric 

statistical estimates such as mean and standard deviation, both definitions 

make the presumption that WSS in the near vessel region is normally 

distributed (for e.g., the SD based definition may result in non-negative 

values for “abnormally low WSS” when the SD is higher than the mean, a 

not-so-uncommon occurrence in some parent vessels such as ICA with 

siphon in the computational domain). We submit that the best alternative 

is to use a non-parametric approach while accommodating the spread of 

WSS in the parent vessel. Hence, we define abnormally low WSS as less 

than the 15.87th percentile (the non-parametric equivalent of “mean-SD” 

in a normal distribution based on the “three sigma rule” or the “68-95-99.7 

rule”) of WSS in the near vessel area. We submit that this improved 

definition will capture the abnormally low wall shear area efficiently in all 
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cases. Where the WSS distribution is indeed normally distributed, it will 

be the same as being lower than one SD from the mean. While we submit 

that this revised definition is conceptually sound, it would not be 

surprising if stratification of aneurysms based on it turns out to be no 

different than that by previous definitions for most cases.

5. Low shear concentration index (LSCI) is a new index we define here as 

the ratio of the average (temporal and spatial) shear stress in the low shear 

area (see definition for LSA above) over that in the entire aneurysm sac. 

This new definition is a modified version of low shear index defined by 

Cebral et al. [6]. LSI was defined as the “relative amount of the total shear 

force applied in regions of abnormally low WSS”. The physical meaning 

of such an index and the mathematical definition proposed for it in their 

report are unclear to us and hence this modified definition.

6. High shear area (HSA): We propose a high shear area index as the area of 

aneurysm that is exposed to wall shear stress above 84.13th percentile. 

Cebral et al.[6] had originally used a high shear area for calculating SCI 

(defined below), but defined it as the area of regions exposed to shear 

stress that is higher than mean+SD of WSS in the near vessel region. Our 

choice of 84.13th percentile for delineating what is “high” is that it is the 

non-parametric equivalent of mean+SD in a normal distribution under the 

same rationale as that for defining “abnormally low” under LSA.

7. Shear concentration index (SCI): SCI, defined by Cebral et al. [6] is the 

ratio of the average (temporal and spatial) shear stress in the high shear 

area (see definition for HSA above) over that in the entire aneurysm sac. 

SCI is simply the high shear counterpart to LSCI.

8. Mean, Maximum and 99th percentile WSS spatial gradient (WSSG): 

Xiang et al. [5], proposed mean WSSG to capture spatial non-uniformity 

in WSS. We include the maximum and 99th percentile WSSG in the 

aneurysm sac under similar rationale as with its WSS counterpart. 

Respectively, these indices are WSSGave, WSSGmax and WSSG99.

9. Mean Oscillatory shear index (OSIave) proposed by Xiang et al.[5] 

captures the temporal directional change of WSS during the cardiac cycle 

reduced to a global index by spatial averaging. OSIave quantifies the 

temporal disturbance in flow in an aneurysm sac.

B. Energy based indices: As blood flows into the aneurysm, an energy loss occurs by 

virtue of its inertial and viscous effects and may be quantified by indices proposed 

by Cebral et al.[6]

1. Kinetic Energy Ratio (KER): This index quantifies the amount of kinetic 

energy in the aneurysm relative to the contiguous vasculature

2. Viscous Dissipation Ratio (VDR): Viscous dissipation is the rate at which 

the work done against viscous forces is irreversibly converted into internal 

Retarekar et al. Page 4

Comput Methods Biomech Biomed Engin. Author manuscript; available in PMC 2016 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



energy. This index measures the ratio of viscous dissipation in the 

aneurysm normalized by the viscous dissipation in the near vessel region.

C. Pressure differential based indices: Pressure in the wall regions is the loading on it 

that may drive its remodeling and/or rupture. We define in this context, the 

temporally averaged spatial mean (DPave) and spatial maximum (DPmax) difference 

in pressure between the aneurysm and near vessel. While physically intuitive, 

caution is warranted with use of these indices because pressure computations in 

CFD analyses, especially with the use of constant pressure outlet conditions, are 

not necessarily reliable[14, 15].

D. Intra-sac flow based indices: The nature of blood flow inside the aneurysm sac is 

determined by the sac morphology and how it relates to its contiguous vasculature. 

The following indices quantify key aspects of such flow:

1. Inflow concentration index (ICI): Defined by Cebral et al., [6] this 

quantifies the degree of concentration of inflow jet entering the sac 

relative to the parent vessel.

2. Residence time (RT): We define here, RT as the average of the time spent 

by all particles entering the aneurysm. To calculate this index, time-

averaged streamtraces may be plotted in the aneurysm sac. Using the 

velocity and distance information from the streamtraces, the time spent by 

an average particle may be calculated.

3. Vortex length (VL): As blood flows into the aneurysm, it undergoes 

recirculation, swirling and exhibits 3-D vortices. Traditionally, vorticity 

information is obtained from a representative cross sectional plane. 

However, this method is subjective and might prove erroneous if the 

vortices inside the aneurysm are out of plane. We propose VL as a new 

index to quantify the spread of the recirculation region. Vortex length 

tracks the centerline of spiraling flow using the critical point theory. 

Critical points were defined by Chong et al. [16] as “points where the 

streamline slope is zero and the velocity is zero relative to an appropriate 

observer”. According to the critical point theory, the Eigen values and 

Eigen vectors of the rate of deformation tensor evaluated at a critical point 

define the flow pattern about that point. For one real and a pair of complex 

conjugate Eigen values, the flow forms a spiral-saddle pattern [17]. VL is 

the length of the vortex centerline and quantifies the extent of recirculation 

in the aneurysm. Incidentally, Raschi et al. [18] recently reported the use 

of vortex coreline for cerebral aneurysms whose length is what we 

propose here as a quantitative metric.

While we have included almost all indices proposed in the literature, some exceptions are 

worth noting.

• Normalizations of WSS and WSSG based indices with respect to their near vessel 

averages have been proposed by Xiang et al. [5]. We did not propose normalization 

with parent vessels for these indices because the depth of existing literature on 
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WSS-related vessel wall pathology may permit their direct interpretation. But we 

concede it may be a prudent alternative considering that most other indices 

proposed above are indeed normalized with respect to the near vessel region.

• Qian et al.[7] proposed energy loss as an index. They calculated it as the difference 

in energy loss between inlet and outlet points in the near vessel region with and 

without the aneurysm. That quantity is not included here, as KER likely already 

quantifies the predominant kinetic energy portion of energy loss.

• Baharoglu et al.[8] proposed shear jet zone size and velocity jet distance to tip as 

indices of aneurysm in-flow jet characteristics. They are indices of the location 

(distance from neck or dome) of the median value for WSS and for inflow velocity 

respectively. However, since the neck point and dome point for an arbitrarily-

shaped aneurysm is difficult to define; we did not propose them here. As our ability 

to characterize sac morphology improves (recent advances do point the way [19]), 

these indices may yet become objectively calculable.

• And finally, while pulsatile flow simulations result in temporally varying 

quantities, in the literature, the above indices are calculated after temporal 

averaging. However, some exceptions exist. Shojima et al.[4] and Jou et al.[3] used 

peak systolic and end-diastolic instances for calculating indices.

Study population

Two independent populations of brain aneurysm models were used in this study to evaluate 

the indices and compare the practical effectiveness of steady versus pulsatile simulations: 1) 

Image-based models from human subjects and 2) idealized models from a population-

average brain arterial network model. The human subjects study population provide realism 

to the comparisons while, the idealized model population provide additional insights without 

any inherent study sample biases in locations, sizes and shapes.

Human subjects—Scan data for 198 unruptured aneurysms that were diagnosed at 4 

different clinical centers (The Penn State Hershey Medical Center, Thomas Jefferson 

University Hospital, Harvard University-Massachusetts General Hospital and The 

University of Iowa Hospitals and Clinics) were obtained. Three-dimensional models of 

aneurysms and their contiguous vasculature were reconstructed using the level set 

segmentation techniques implemented in the open-source software “Vascular Modeling 

toolkit”(VMTK) [20] (Figure 1). The non-shrinking filters by Taubin implemented in 

VMTK were used to smooth the segmented model. Table 1 provides the distribution of these 

aneurysms according to their location in the cerebral vasculature.

Idealized models—30 idealized models of cerebral aneurysms and their contiguous 

vasculature were created in Rhinoceros 3D. Use of additional idealistic models in the study 

provided a control on the morphological aspect of comparison. The idealized models were 

created by placing aneurysm sacs in a head and neck arterial network model developed in-

house with population averaged dimensions [21] (Figure 2) and truncating it to the flow-

relevant domains. Specifically, the 30 sacs were a result of perturbing the following aspects 

of morphology:
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• Location: Internal Carotid Artery, Basilar Tip and Anterior Communicating Artery

• Size Ratio (Height of aneurysm/ Diameter of parent vessel)[22]: 1, 2 and 3

• Shape: Spherical, prolate ellipsoid and oblate ellipsoid

• Daughter Sac Models: For spherical ICA aneurysm of size ratio 2, three additional 

models of daughter sac bearing aneurysms were created. Size of the daughter sac 

was chosen to be 40%, 50% and 60% of the aneurysm diameter in the three models.

Choice of these locations was made to include both anterior and posterior circulation in the 

flow analysis. Precise location for attachment of daughter sac was determined after 

consultation with a physician to ensure representativeness of the general population.

CFD analysis

Meshing of the image based models was performed using VMTK and Gambit (Ansys Inc., 

Lebanon, NH). Gambit’s curvature size function was used to obtain a finer mesh in regions 

of larger curvature such as the aneurysm. In order to capture the boundary layer with better 

accuracy, prism elements were used to mesh the near wall region. The mesh densities varied 

from 0.5 to 8 million tetrahedral elements. Flow waveform by Ford et al.[23] was used to 

specify the inlet velocity for pulsatile flow analysis. The time-averaged flow value was used 

to specify inlet velocity in steady flow analysis. Constant pressure boundary condition was 

specified at the outlets. In the pulsatile flow analysis, 2 cardiac cycles were run for each case 

with a time step size of 0.001s (300 iterations/time-step) and a time period of 0.9 seconds. 

Solution from the second cardiac cycle was used for calculation of indices. Meshing of the 

30 idealized models (27 models with all combinations of location, size ratio and shape with 

the 3 models with daughter sacs) was performed in Gambit with additional refinement of the 

aneurysm region. Mesh density for these models varied from 0.95 to 1.45 million tetrahedral 

elements. In order to specify velocity waveforms at the inlets, descriptive statistics of the 

internal carotid waveform presented by Ford et al. [23] were fitted to Fourier series using a 

Matlab program. For aneurysms positioned at locations other than ICA, the waveform was 

scaled such that the temporally averaged flow matches the population averaged value 

reported in literature. The time-averaged flow value was used to specify inlet velocity in 

steady flow analysis. Since, in the idealized models, the number of vessels remained 

constant across a given perturbation of aneurysm morphology, outflow boundary condition 

was specified by using flow rate values published in literature [24-31]. The inlet and outlet 

boundary conditions were adjusted down to account for the small amounts of flow through 

any small vessels which are not included in the models [32]. In the pulsatile flow analysis, 3 

cardiac cycles were run for each case with a time step size of 0.001s (200 iterations/time-

step) and solution from the third cardiac cycle was used. For the models in both study 

populations, the inlet was extended by adding a straight cylindrical tube so as to recreate the 

fully developed flow condition. Flow simulations were performed using the commercial 

software Fluent (Ansys Inc., Lebanon, NH). Blood was assumed to be a Newtonian, 

incompressible fluid. No-slip boundary condition was used. The “Semi-implicit method for 

pressure linked equations” scheme was used for pressure velocity coupling. Standard 

pressure discretization and first order momentum discretization was performed. All 

simulations used a convergence criterion of 1*10−6.
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Statistical Analysis

Hemodynamic indices computed from steady flow simulations were compared to their time-

averaged counterparts from pulsatile flow analysis using three statistical metrics. The 

Pearson product-moment correlation coefficient (−1 ≤ r ≤ 1) was used as a measure of the 

strength of linear dependence between the two approaches based on each index. When r=1, 

one method consistently scales up or scales down the indices within a study population 

compared to the other method (that is, the results from one method may be obtained from 

the other with a constant scale factor). The Spearman’s rank correlation coefficient (−1 ≤ ρ ≤ 

1) was used as a metric of the similarity in rank between two analysis – i.e., how they rank 

(and hence stratify) the aneurysms in the study population based on a given index. If the two 

analyses render an identical ranking order for the aneurysm population, then ρ =1. Slope of 

the best-fit linear regression (with intercept =0) was used as the third comparison metric in 

this study (−∞ ≤ k ≤ ∞). If the value of an index calculated from pulsatile flow analysis is 

identical to its steady counterpart, then k =1. The Pearson’s correlation assesses the level of 

numerical redundancy between estimates from two analyses. The Spearman’s correlation 

assesses the impact any existing redundancies will have in clinical trial-type studies where 

hypotheses on rupture risk induced by abnormal hemodynamics are tested. ρ therefore is the 

metric directly relevant to our goal, but r and to an extent k, provide additional insight. As a 

subjective comparison, the spatial distribution of WSS from steady simulation was visually 

compared with time-averaged WSS from pulsatile simulation.

Results

Flow simulations converged for all but 5 cases. Models that did not meet the convergence 

criterion were excluded from the statistical comparison. All hemodynamic indices proposed 

above were computed for patient-specific models under steady and pulsatile conditions. 

WSS distributions and streamlines were found to be near identical between steady flow 

simulations versus time-averaged pulsatile flow simulations (see Figure 3 for representative 

illustrations). All indices showed a linear relationship between steady flow-based and 

pulsatile flow-based estimations (see Figure 4) with a very strong correlation and near-

identical ranking (Table 2).

Discussion

There is increasing interest in assessing what role, if any, that hemodynamics in aneurysm 

may play in their natural history. So it is important to collect and compile the various global 

quantitative indices that capture the spatially and temporally variant flow characteristics. We 

believe we have done that in this study. The second aim of this study was to assess if it is 

possible to get the same ranking of a population of patient-specific aneurysms based on the 

aneurysmal hemodynamic environment using steady flow simulation as would be obtained 

from pulsatile flow simulation when population-wide assumptions are inevitably made about 

inlet and outlet flow conditions and material properties. At the outset, steady flow simulation 

may seem to be a dubious substitute for pulsatile flow simulation since we know the flow is 

indeed pulsatile and temporal variations do exist within a cardiac cycle. Indeed, if we are 

trying to understand aneurysmal flow phenomenon, pulsatile flow is indispensable. But, if 
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we are trying to distinguish, stratify or rank patient-specific aneurysms based on their flow 

characteristics – and this is often the case in many reported studies [1-3, 5, 6, 8, 10] – let us 

be careful not to confuse what we know happens inside the body with what we can reliably 

learn from modeling it with limited patient-specific information. Two key issues need to be 

considered in that context. One, we often tend to know little to nothing about the boundary 

conditions (inlet velocity profiles, outlet impedances) on a patient-specific basis. This forces 

us to make population-wide assumptions on such conditions (e.g., on temporal variation of 

inlet velocity and outlet impedance) making pulsatile flow modeling more of an unknown 

devil than steady flow modeling. And two, what we seek from these studies is not the actual 

results (such as value of WSSave), but rather how they differ among patients being 

evaluated. If the only measured difference between these patient-specific simulations is in 

the geometry and not in other aspects of the simulation, then the differences among patients 

in indices attained from pulsatile flow simulations may not (perhaps even should not) be 

different whether it is based on steady or pulsatile flow conditions. Some reported findings 

are indeed consistent with this assertion. Mantha et al.[33] identified common features of 

large scale flow patterns in 6 cerebral aneurysms using both steady and pulsatile flow 

simulations. Their results indicated that the basic flow pattern remains unchanged under 

steady state and pulsatile flow conditions. Geers et al.[34] compared steady-state to transient 

simulations of two patient specific intracranial aneurysms by conducting experiments 

examining the effect of flow rate waveform. Their study reported that the hemodynamic 

environment obtained from steady state simulation was similar to that obtained from a 

transient simulation. Cebral et al. [6] in their study with 210 patient specific cerebral 

aneurysms found that indices based on steady flow simulations distinguished ruptured from 

unruptured groups as effectively as pulsatile flow simulations.

The results reported here are consistent with the above mentioned studies. Since the key goal 

is the ranking of aneurysms within a population, the Spearman coefficient (ρ) is the most 

appropriate metric. Clearly, in all indices compared, ρ was almost 1, suggesting that in this 

large population, a steady flow simulation is as effective as a pulsatile flow simulation in 

stratifying aneurysms based on the indices reported. But the agreement goes deeper than 

that. That the Pearson coefficient (r) was also close to 1 suggests that steady flow based 

estimates consistently scales up or down those from pulsatile flow. Taken together, the 

results suggest that steady flow is about as effective for stratifying aneurysms based on the 

indices we have assessed when vessel and sac morphology is the only patient-specific 

information available within a population being studied. This is also conformed in the 

idealized study population. On occasion, some outliers may be noted such as some data 

points for VL and LSA. Although the correlation coefficients are slightly lower for VL and 

RT as compared to the other indices, the values for r and ρ are above 0.95. Since they are 

new indices, their robustness has not been established yet. It is speculated that it may be the 

reason for the slightly lower values. But for these few cases, there is little deviation from the 

overall finding. In the idealized models, some ACOM models did show apparent differences 

(see Fig.3 (f)), but these did not manifest in any significant manner on the stratification itself 

(ρ =0.99 for WSSave).
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One could wonder if these findings are simply a result of using time-averaged estimates for 

the pulsatile simulations and whether differences may start to appear when indices are 

defined at the peak-systolic or end-diastolic time points. We concede that this study does not 

offer sufficient insights on that question. But as we note earlier, the fact remains that indices 

proposed in the mainstream literature are predominantly those that are time-averaged over 

the cardiac cycle. This is grounded in the notion that long-term changes to the aneurysm 

wall tissue pathology from blood flow characteristics are likely the result of “chronic”, not 

“acute” events. That is, flow characteristics that are spread out over a time period may 

matter more than characteristics that occur in short bursts – the use of time averaged indices 

(as opposed to peak-systolic ones) are consistent with this. Nevertheless, we concede that if 

future studies were to find that, metrics based on instantaneous flow characteristics such as 

peak-systolic WSS are important, steady flow simulation may not be necessarily sufficient. 

In such a case however, issues we have not satisfactorily addressed in this study may take 

forefront such as, mesh refinement. As is well known, an endlessly increasing mesh 

refinement is likely to result in an ever-increasing set of new insights into the flow 

characteristics. How dense should the refinement be before other assumptions such as 

ignoring the formed elements in blood and the associated non-Newtonian characteristics 

start to affect the simulations remains unclear. Therefore, the findings in this study that 

steady flow simulation may be sufficient for stratification of aneurysm in a population 

should be confined to time-averaged indices. Another limitation of the current study is that 

not all indices could be compared between steady and pulsatile flow simulations. OSI is one 

such pulsatile index with no direct steady-flow counterpart because temporal variation is in 

its very definition. However, the temporal gradients in flow characteristics that OSI 

quantifies are mainly determined by the temporal variations in the inlet velocity waveform – 

a presumed quantity that is uniformly applied within a study population. So this limitation 

does not overwhelm the validity of our case regarding the utility of steady flow simulation. 

On the other hand, in a large population study with morphology being the only measured 

differentiator among study subjects, Xiang et al. [5] found OSI was an independent 

discriminant of rupture status. This suggests that OSI may be affected by morphology in 

ways that aren’t captured by any of the steady flow indices. Clearly the effect of 

morphological characteristics on OSI independent of presumed temporal variations in the 

inlet waveform needs further study. Other assumptions such as use of rigid wall, Newtonian 

and incompressible fluid assumptions are common in the literature. The mesh resolution 

used in this study (about 0.15 mm element size and 1.5 million elements on average) are 

consistent with the literature [5, 6, 14] and consistent with the resolution of image data 

available to us for patient-specific geometric reconstruction. Still the optimal mesh 

resolution for assessing aneurysmal hemodynamics remains unknown and a matter of 

debate. And finally, we fail here to accommodate unsteady flow aspects that may occur 

under steady flow inlet and outlet boundary conditions, again an area of study as yet poorly 

understood.

In conclusion, we have reported here a broad collection of indices of blood flow in 

intracranial aneurysms with refinements where necessary. And we have shown that, to the 

extent we focus on time-averaged indices, and to the extent that we make consistent 

assumptions on inlet and outlet flow conditions for aneurysms (as has been done by 
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previously reported relevant studies), the ranking of aneurysms in a population will likely be 

no different whether we employ steady or pulsatile flow simulations. This is consistent with 

the fact that hemodynamics based stratification is but a physically grounded proxy for 

distinguishing aneurysms based on morphology – which is really the only measured piece of 

information that is known to be different between the aneurysms in this and in many patient 

population studies. We caution however that our claim here should not be misinterpreted as 

a broad claim about steady flow simulations being an effective substitute for pulsatile flow 

simulations under any given study goal or boundary conditions. Certainly, if the goal is to 

gain insights about the nature of flow in an aneurysm, to understand how it affects 

pathology, or to evaluate how it is affected by intervention and placement of an implant, 

then pulsatile flow simulations may well be indispensable.
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Figure 1. 
Three dimensional models for 9 representative cases in the human subject population.
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Figure 2. 
(a) Complete circle of Willis model. Representative truncated model used for CFD 

simulations: (b) ICA aneurysm (c) Basilar aneurysm (d) ACOM aneurysm and (e) Daughter 

sac bearing ICA aneurysm
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Figure 3. 
WSS distribution and streamlines from steady and pulsatile flow simulations for 3 patient 

specific aneurysm models (a, b and c) and 3 idealized aneurysm models (d, e and f)
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Figure 4. 
Correlation between steady (x-axis) and pulsatile (y-axis) flow analysis of 193 patient 

specific aneurysms

Retarekar et al. Page 17

Comput Methods Biomech Biomed Engin. Author manuscript; available in PMC 2016 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Retarekar et al. Page 18

Table 1
Distribution of aneurysms according to location

Location Number of Aneurysms

Internal Carotid Artery (ICA) 67

Middle Cerebral Artery (MCA) 57

Anterior Communicating Artery (Acomm) 24

Basilar 10

Anterior Cerebral Artery (ACA) 15

Ophthalmic Artery (Ophth) 8

Posterior Cerebral Artery (PCA) 3

Posterior Communicating Artery (Pcomm) 6

Vertebral 2

Superior Cerebellar Artery (SCA) 3

Periophthalmic Artery (Periophth) 1

Posterior Inferior Cerebellar Artery (PICA) 2
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Table 2
Statistical metrics for all hemodynamic indices

Index Pearson Correlation (r) Spearman Correlation (ρ) Slope (k)

WSSave 0.9998 0.9992 1.0505

WSSmax 0.9997 0.9983 1.0320

WSS99 0.9998 0.9994 1.0395

LSA 0.9948 0.9954 0.9990

HSA 0.9987 0.9908 1.0208

LSCI 0.9931 *0.9917 0.9857

SCI 0.9943 *0.9931 0.9139

WSSGave 0.9998 0.9991 1.0471

WSSGmax 0.9975 0.9981 1.0236

WSSG99 0.9997 0.9991 1.0362

KER 0.9994 0.9983 0.9923

VDR 0.9993 0.9988 0.9874

DPave 0.9999 0.9995 1.0676

DPmax 0.9997 0.9987 1.0690

ICI 0.9991 0.9994 1.0110

VL 0.9713 0.9841 0.9292

RT 0.9752 0.9644 0.6777

*
indicates that for some subjects the value of these indices were indeterminate and therefore they were not included in the Spearman Correlation 

calculation
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