11 research outputs found

    Spontaneous polarisation of the neutral interface for valence asymmetric coulombic systems

    Full text link
    In this paper, we discuss the phenomenon of a spontaneous polarisation of a neutral hard planar interface for valence asymmetric coulombic systems. Within a field theoretical description, we account for the existence of non trivial charge density and electric potential profiles. The analysis of the phenomenon shows that the effect is related to combinatorics in relation with the existence of the two independent species cations and anions. This simple and basic feature is related to the quantum mechanical properties of the system. The theoretical results are compared with numerical simulations data and are shown to be in very good agreement, which a fortiori justifies our physical interpretation.Comment: 12 pages, 11 figure

    Capillary Condensation and Interface Structure of a Model Colloid-Polymer Mixture in a Porous Medium

    Full text link
    We consider the Asakura-Oosawa model of hard sphere colloids and ideal polymers in contact with a porous matrix modeled by immobilized configurations of hard spheres. For this ternary mixture a fundamental measure density functional theory is employed, where the matrix particles are quenched and the colloids and polymers are annealed, i.e. allowed to equilibrate. We study capillary condensation of the mixture in a tiny sample of matrix as well as demixing and the fluid-fluid interface inside a bulk matrix. Density profiles normal to the interface and surface tensions are calculated and compared to the case without matrix. Two kinds of matrices are considered: (i) colloid-sized matrix particles at low packing fractions and (ii) large matrix particles at high packing fractions. These two cases show fundamentally different behavior and should both be experimentally realizable. Furthermore, we argue that capillary condensation of a colloidal suspension could be experimentally accessible. We find that in case (ii), even at high packing fractions, the main effect of the matrix is to exclude volume and, to high accuracy, the results can be mapped onto those of the same system without matrix via a simple rescaling.Comment: 12 pages, 9 figures, submitted to PR

    Ionic liquids at electrified interfaces

    Get PDF
    Until recently, “room-temperature” (<100–150 °C) liquid-state electrochemistry was mostly electrochemistry of diluted electrolytes(1)–(4) where dissolved salt ions were surrounded by a considerable amount of solvent molecules. Highly concentrated liquid electrolytes were mostly considered in the narrow (albeit important) niche of high-temperature electrochemistry of molten inorganic salts(5-9) and in the even narrower niche of “first-generation” room temperature ionic liquids, RTILs (such as chloro-aluminates and alkylammonium nitrates).(10-14) The situation has changed dramatically in the 2000s after the discovery of new moisture- and temperature-stable RTILs.(15, 16) These days, the “later generation” RTILs attracted wide attention within the electrochemical community.(17-31) Indeed, RTILs, as a class of compounds, possess a unique combination of properties (high charge density, electrochemical stability, low/negligible volatility, tunable polarity, etc.) that make them very attractive substances from fundamental and application points of view.(32-38) Most importantly, they can mix with each other in “cocktails” of one’s choice to acquire the desired properties (e.g., wider temperature range of the liquid phase(39, 40)) and can serve as almost “universal” solvents.(37, 41, 42) It is worth noting here one of the advantages of RTILs as compared to their high-temperature molten salt (HTMS)(43) “sister-systems”.(44) In RTILs the dissolved molecules are not imbedded in a harsh high temperature environment which could be destructive for many classes of fragile (organic) molecules

    Oznaczanie azotanów w warzywach i w wodzie pitnej metodą potencjometryczną i spektrofotometryczną

    No full text
    W niniejszej pracy przedstawiono badania dotyczące zastosowania nowej jonoselektywnej elektrody azotanowej do oznaczania azotanów w produktach spożywczych. Miarodajność wyników oznaczenia metodą potencjometryczną zweryfikowano wykonując oznaczenie tej samej próbki metodą spektrofotometryczną zgodnie z Polską Normą PN-82/C-04576/08. Dla każdego rodzaju analizowanej próbki uzyskano zadowalającą zgodność wyników oznaczeń co potwierdza przydatność analityczną badanej elektrody azotanowej

    Molecular Dynamics Simulation Study of the Interfacial Structure and Differential Capacitance of Alkylimidazolium Bis(trifluoromethanesulfonyl)imide [C n

    No full text
    corecore