2 research outputs found

    Polyurea dendrimer for efficient cytosolic siRNA delivery

    Get PDF
    PEst-OE/SAU/UI0009/2013 SFRH/BD/62957/2009The design of small interfering RNA (siRNA) delivery materials showing efficacy in vivo is at the forefront of nanotherapeutics research. Polyurea (PURE-type) dendrimers are 'smart' biocompatible 3D polymers that unveil a dynamic and elegant back-folding mechanism involving hydrogen bonding between primary amines at the surface and tertiary amines and ureas at the core. Similarly, to a biological proton pump, they are able to automatically and reversibly transform their conformation in response to pH stimulus. Here, we show that PURE-G4 is a useful gene silencing platform showing no cellular toxicity. As a proof of concept we investigated the PURE-G4-siRNA dendriplex, which was shown to be an attractive platform with high transfection efficacy. The simplicity associated with the complexation of siRNA with polyurea dendrimers makes them a powerful tool for efficient cytosolic siRNA delivery.authorsversionpublishe

    Biocompatible oligo-oxazoline crosslinkers: Towards advanced chitosans for controlled dug release

    Get PDF
    Associate Laboratory for Green Chemistry - LAQV which is financed by national funds from FCT/MCTES (UIDB/50006/2020 and UIDP/50006/2020).Chitosan, a natural and abundant biopolymer has been long explored as a biocompatible material for the preparation of drug delivery devices. This strategy has been mostly accomplished using chemically crosslinked chitosan leading to more stable scaffolds. However, crosslinking has been shown to reduce both biocompatibility and swelling. In this work chitosan was crosslinked with novel biocompatible crosslinkers, based on oligo-oxazolines and glycidyl methacrylate copolymers, leading to patches with a very high swelling capacity. Dexamethasone therapeutics is strongly enhanced by a controlled release administration. This study shows that oligo-oxazoline-crosslinked chitosan is a suitable biomaterial for loading and controlled release of dexamethasone.publishersversionpublishe
    corecore