418 research outputs found

    Desynchronizing effect of high-frequency stimulation in a generic cortical network model

    Full text link
    Transcranial Electrical Stimulation (TCES) and Deep Brain Stimulation (DBS) are two different applications of electrical current to the brain used in different areas of medicine. Both have a similar frequency dependence of their efficiency, with the most pronounced effects around 100Hz. We apply superthreshold electrical stimulation, specifically depolarizing DC current, interrupted at different frequencies, to a simple model of a population of cortical neurons which uses phenomenological descriptions of neurons by Izhikevich and synaptic connections on a similar level of sophistication. With this model, we are able to reproduce the optimal desynchronization around 100Hz, as well as to predict the full frequency dependence of the efficiency of desynchronization, and thereby to give a possible explanation for the action mechanism of TCES.Comment: 9 pages, figs included. Accepted for publication in Cognitive Neurodynamic

    Computational exploration of molecular receptive fields in the olfactory bulb reveals a glomerulus-centric chemical map

    Get PDF
    © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Progress in olfactory research is currently hampered by incomplete knowledge about chemical receptive ranges of primary receptors. Moreover, the chemical logic underlying the arrangement of computational units in the olfactory bulb has still not been resolved. We undertook a large-scale approach at characterising molecular receptive ranges (MRRs) of glomeruli in the dorsal olfactory bulb (dOB) innervated by the MOR18-2 olfactory receptor, also known as Olfr78, with human ortholog OR51E2. Guided by an iterative approach that combined biological screening and machine learning, we selected 214 odorants to characterise the response of MOR18-2 and its neighbouring glomeruli. We found that a combination of conventional physico-chemical and vibrational molecular descriptors performed best in predicting glomerular responses using nonlinear Support-Vector Regression. We also discovered several previously unknown odorants activating MOR18-2 glomeruli, and obtained detailed MRRs of MOR18-2 glomeruli and their neighbours. Our results confirm earlier findings that demonstrated tunotopy, that is, glomeruli with similar tuning curves tend to be located in spatial proximity in the dOB. In addition, our results indicate chemotopy, that is, a preference for glomeruli with similar physico-chemical MRR descriptions being located in spatial proximity. Together, these findings suggest the existence of a partial chemical map underlying glomerular arrangement in the dOB. Our methodology that combines machine learning and physiological measurements lights the way towards future high-throughput studies to deorphanise and characterise structure-activity relationships in olfaction.Peer reviewe

    Peritraumatic Distress, Watching Television, and Posttraumatic Stress Symptoms among Rescue Workers after the Great East Japan Earthquake

    Get PDF
    BACKGROUND: The Great East Japan Earthquake of March 11, 2001 left around 20,000 dead or missing. Previous studies showed that rescue workers, as well as survivors, of disasters are at high risk for posttraumatic stress disorder (PTSD). This study examined the predictive usefulness of the Peritraumatic Distress Inventory (PDI) among rescue workers of Disaster Medical Assistance Teams (DMATs) deployed during the acute disaster phase of the Great East Japan Earthquake. METHODOLOGY/PRINCIPAL FINDINGS: In this prospective observational study, the DMAT members recruited were assessed 1 month after the earthquake on the PDI and 4 months after the earthquake on the Impact of Event Scale-Revised to determine PTSD symptoms. The predictive value of the PDI at initial assessment for PTSD symptoms at the follow-up assessment was examined by univariate and multiple linear regression analysis. Of the 254 rescue workers who participated in the initial assessment, 173 completed the follow-up assessment. Univariate regression analysis revealed that PDI total score and most individual item scores predicted PTSD symptoms. In particular, high predictive values were seen for peritraumatic emotional distress such as losing control of emotions and being ashamed of emotional reactions. In multiple linear regression analysis, PDI total score was an independent predictor for PTSD symptoms after adjusting for covariates. As for covariates specifically, watching earthquake television news reports for more than 4 hours per day predicted PTSD symptoms. CONCLUSIONS/SIGNIFICANCE: The PDI predicted PTSD symptoms in rescue workers after the Great East Japan Earthquake. Peritraumatic emotional distress appears to be an important factor to screen for individuals at risk for developing PTSD among medical rescue workers. In addition, watching television for extended period of time might require attention at a time of crisis

    Amygdala circuitry mediating reversible and bidirectional control of anxiety

    Get PDF
    Anxiety—a sustained state of heightened apprehension in the absence of immediate threat—becomes severely debilitating in disease states. Anxiety disorders represent the most common of psychiatric diseases (28% lifetime prevalence) and contribute to the aetiology of major depression and substance abuse. Although it has been proposed that the amygdala, a brain region important for emotional processing, has a role in anxiety, the neural mechanisms that control anxiety remain unclear. Here we explore the neural circuits underlying anxiety-related behaviours by using optogenetics with two-photon microscopy, anxiety assays in freely moving mice, and electrophysiology. With the capability of optogenetics to control not only cell types but also specific connections between cells, we observed that temporally precise optogenetic stimulation of basolateral amygdala (BLA) terminals in the central nucleus of the amygdala (CeA)—achieved by viral transduction of the BLA with a codon-optimized channelrhodopsin followed by restricted illumination in the downstream CeA—exerted an acute, reversible anxiolytic effect. Conversely, selective optogenetic inhibition of the same projection with a third-generation halorhodopsin (eNpHR3.0) increased anxiety-related behaviours. Importantly, these effects were not observed with direct optogenetic control of BLA somata, possibly owing to recruitment of antagonistic downstream structures. Together, these results implicate specific BLA–CeA projections as critical circuit elements for acute anxiety control in the mammalian brain, and demonstrate the importance of optogenetically targeting defined projections, beyond simply targeting cell types, in the study of circuit function relevant to neuropsychiatric disease

    Decreased SGK1 Expression and Function Contributes to Behavioral Deficits Induced by Traumatic Stress

    No full text
    Exposure to extreme stress can trigger the development of major depressive disorder (MDD) as well as post-traumatic stress disorder (PTSD). The molecular mechanisms underlying the structural and functional alterations within corticolimbic brain regions, including the prefrontal cortex (PFC) and amygdala of individuals subjected to traumatic stress, remain unknown. In this study, we show that serum and glucocorticoid regulated kinase 1 (SGK1) expression is down-regulated in the postmortem PFC of PTSD subjects. Furthermore, we demonstrate that inhibition of SGK1 in the rat medial PFC results in helplessness- and anhedonic-like behaviors in rodent models. These behavioral changes are accompanied by abnormal dendritic spine morphology and synaptic dysfunction. Together, the results are consistent with the possibility that altered SGK1 signaling contributes to the behavioral and morphological phenotypes associated with traumatic stress pathophysiology

    The precision of axon targeting of mouse olfactory sensory neurons requires the BACE1 protease

    Get PDF
    The β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is necessary to generate the Aβ peptide, which is implicated in Alzheimer's disease pathology. Studies show that the expression of BACE1 and its protease activity are tightly regulated, but the physiological function of BACE1 remains poorly understood. Recently, numerous axon guidance proteins were identified as potential substrates of BACE1. Here, we examined the consequences of loss of BACE1 function in a well-defined in vivo model system of axon guidance, mouse olfactory sensory neurons (OSNs). The BACE1 protein resides predominantly in proximal segment and the termini of OSN axons, and the expression of BACE1 inversely correlates with odor-evoked neural activity. The precision of targeting of OSN axons is disturbed in both BACE1 null and, surprisingly, in BACE1 heterozygous mice. We propose that BACE1 cleavage of axon guidance proteins is essential to maintain the connectivity of OSNs in vivo

    Principles of Glomerular Organization in the Human Olfactory Bulb – Implications for Odor Processing

    Get PDF
    Olfactory sensory neurons (OSN) in mice express only 1 of a possible 1,100 odor receptors (OR) and axons from OSNs expressing the same odor receptor converge into ∼2 of the 1,800 glomeruli in each olfactory bulb (OB) in mice; this yields a convergence ratio that approximates 2∶1, 2 glomeruli/OR. Because humans express only 350 intact ORs, we examined human OBs to determine if the glomerular convergence ratio of 2∶1 established in mice was applicable to humans. Unexpectedly, the average number of human OB glomeruli is >5,500 yielding a convergence ratio of ∼16∶1. The data suggest that the initial coding of odor information in the human OB may differ from the models developed for rodents and that recruitment of additional glomeruli for subpopulations of ORs may contribute to more robust odor representation

    Deep brain stimulation for obsessive-compulsive disorder and treatment-resistant depression: systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In spite of advances in psychotherapy and pharmacotherapy, there are still a significant number of patients with depression and obsessive-compulsive disorder that are not aided by either intervention. Although still in the experimental stage, deep brain stimulation (DBS) offers many advantages over other physically-invasive procedures as a treatment for these psychiatric disorders. The purpose of this study is to systematically review reports on clinical trials of DBS for obsessive-compulsive disorder (OCD) and treatment-resistant depression (TRD). Locations for stimulation, success rates and effects of the stimulation on brain metabolism are noted when available. The first observation of the effects of DBS on OCD and TRD came in the course of using DBS to treat movement disorders. Reports of changes in OCD and depression during such studies are reviewed with particular attention to electrode locations and associated adverse events; although these reports were adventitious observations rather than planned. Subsequent studies have been guided by more precise theories of structures involved in DBS and OICD. This study suggests stimulation sites and prognostic indicators for DBS. We also briefly review tractography, a relatively new procedure that holds great promise for the further development of DBS.</p> <p>Methods</p> <p>Articles were retrieved from MEDLINE via PubMed. Relevant references in retrieved articles were followed up. We included all articles reporting on studies of patients selected for having OCD or TRD. Adequacy of the selected studies was evaluated by the Jadad scale. Evaluation criteria included: number of patients, use of recognized psychiatric rating scales, and use of brain blood flow measurements. Success rates classified as "improved" or "recovered" were recorded. Studies of DBS for movement disorders were included if they reported coincidental relief of depression or reduction in OCD. Most of the studies involved small numbers of subjects so individual studies were reviewed.</p> <p>Results</p> <p>While the number of cases was small, these were extremely treatment-resistant patients. While not everyone responded, about half the patients did show dramatic improvement. Associated adverse events were generally trivial in younger psychiatric patients but often severe in older movement disorder patients. The procedures differed from study to study, and the numbers of patients was usually too small to do meaningful statistics or make valid inferences as to who will respond to treatment.</p> <p>Conclusions</p> <p>DBS is considered a promising technique for OCD and TRD. Outstanding questions about patient selection and electrode placement can probably be resolved by (a) larger studies, (b) genetic studies and (c) imaging studies (MRI, fMRI, PET, and tractography).</p
    corecore