24 research outputs found

    On Extractors and Exposure-Resilient Functions for Sublogarithmic Entropy

    Full text link
    We study deterministic extractors for oblivious bit-fixing sources (a.k.a. resilient functions) and exposure-resilient functions with small min-entropy: of the function's n input bits, k << n bits are uniformly random and unknown to the adversary. We simplify and improve an explicit construction of extractors for bit-fixing sources with sublogarithmic k due to Kamp and Zuckerman (SICOMP 2006), achieving error exponentially small in k rather than polynomially small in k. Our main result is that when k is sublogarithmic in n, the short output length of this construction (O(log k) output bits) is optimal for extractors computable by a large class of space-bounded streaming algorithms. Next, we show that a random function is an extractor for oblivious bit-fixing sources with high probability if and only if k is superlogarithmic in n, suggesting that our main result may apply more generally. In contrast, we show that a random function is a static (resp. adaptive) exposure-resilient function with high probability even if k is as small as a constant (resp. log log n). No explicit exposure-resilient functions achieving these parameters are known

    Functionally informed fine-mapping and polygenic localization of complex trait heritability

    Get PDF
    Fine-mapping aims to identify causal variants impacting complex traits. We propose PolyFun, a computationally scalable framework to improve fine-mapping accuracy by leveraging functional annotations across the entire genome-not just genome-wide-significant loci-to specify prior probabilities for fine-mapping methods such as SuSiE or FINEMAP. In simulations, PolyFun + SuSiE and PolyFun + FINEMAP were well calibrated and identified >20% more variants with a posterior causal probability >0.95 than identified in their nonfunctionally informed counterparts. In analyses of 49 UK Biobank traits (average n = 318,000), PolyFun + SuSiE identified 3,025 fine-mapped variant-trait pairs with posterior causal probability >0.95, a >32% improvement versus SuSiE. We used posterior mean per-SNP heritabilities from PolyFun + SuSiE to perform polygenic localization, constructing minimal sets of common SNPs causally explaining 50% of common SNP heritability; these sets ranged in size from 28 (hair color) to 3,400 (height) to 2 million (number of children). In conclusion, PolyFun prioritizes variants for functional follow-up and provides insights into complex trait architectures. PolyFun is a computationally scalable framework for functionally informed fine-mapping that makes full use of genome-wide data. It prioritizes more variants than previous methods when applied to 49 complex traits from UK Biobank.Peer reviewe
    corecore