3 research outputs found

    Lichen xanthones as models for new antifungal agents

    Get PDF
    Due to the emergence of multidrug-resistant pathogenic microorganisms, the search for new antimicrobial compounds plays an important role in current medicinal chemistry research. Inspired by lichen antimicrobial xanthones, a series of novel chlorinated xanthones was prepared using five chlorination methods (Methods A–E) to obtain different patterns of substitution in the xanthone scaffold. All the synthesized compounds were evaluated for their antimicrobial activity. Among them, 3-chloro-4,6-dimethoxy-1-methyl-9H-xanthen-9-one 15 showed promising antibacterial activity against E. faecalis (ATCC 29212 and 29213) and S. aureus ATCC 29213. 2,7-Dichloro-3,4,6-trimethoxy-1-methyl-9H-xanthen-9-one 18 revealed a potent fungistatic and fungicidal activity against dermatophytes clinical strains (T. rubrum, M. canis, and E. floccosum (MIC = 4–8 µg/mL)). Moreover, when evaluated for its synergistic effect for T. rubrum, compound 18 exhibited synergy with fluconazole (ΣFIC = 0.289). These results disclosed new hit xanthones for both antibacterial and antifungal activity.This work was partially supported through national funds provided by FCT/MCTES - Foundation for Science and Technology from the Ministry of Science, Technology, and Higher Education (PIDDAC) and the European Regional Development Fund (ERDF) through the COMPETE - Programa Operacional Factores de Competitividade (POFC) programme, under the Strategic Funding UID/Multi/04423/2013, the projects POCI-01-0145-FEDER-028736 and POCI-01-0145-FEDER-016790 (PTDC/MAR-BIO/4694/2014; 3599-PPCDT) in the framework of the programme PT2020, as well as by the project INNOVMAR - Innovation and Sustainability in the Management and Exploitation of Marine Resources (reference NORTE-01-0145-FEDER-000035, within Research Line NOVELMAR), supported by North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). Diana I. S. P. Resende also acknowledge for her grant (NOVELMAR/BPD_2/2016-019) and Patrícia Pereira-Terra for her grant (NOVELMAR/BPD/2017/012)

    Antitumor activity of quinazolinone alkaloids inspired by marine natural products

    Get PDF
    Many fungal quinazolinone metabolites, which contain the methyl-indole pyrazino [1,2-b]quinazoline-3,6-dione core, have been found to possess promising antitumor activity. The purpose of this work was to synthesize the enantiomeric pairs of two members of this quinazolinone family, to explore their potential as antitumor and their ability to revert multidrug resistance. The marine natural product fiscalin B (4c), and antienantiomers (4b, 5b, and 5c) were synthesized via a one-pot approach, while the syn enantiomers (4a, 4d, 5a, and 5d) were synthetized by a multi-step procedure. These strategies used anthranilic acid (i), chiral N-protected α-amino acids (ii), and tryptophan methyl esters (iii) to form the core ring of pyrazino[2,1-b]quinazoline-3,6-dione scaffold. Four enantiomeric pairs, with different enantiomeric purities, were obtained with overall yields ranging from 7 to 40%. Compounds 4a–d and 5a–d were evaluated for their growth inhibitory effect against two tumor cell lines. Differences between enantiomeric pairs were noted and 5a–d displayed GI50 values ranging from 31 to 52 µM, which are lower than those of 4a–d. Nevertheless, no effect on P-glycoprotein (P-gp) modulation was observed for all compounds. This study disclosed new data for fiscalin B (4c), as well as for its analogues for a future development of novel anticancer drug leads. © 2018 by the authors.Funding: This research was partially supported by the Strategic Funding UID/Multi/04423/2013 through national funds provided by FCT—Foundation for Science and Technology and European Regional Development Fund (ERDF), in the framework of the program PT2020. The authors thank to national funds provided by FCT—Foundation for Science and Technology and European Regional Development Fund (ERDF) and COMPETE under the Strategic Funding UID/Multi/04423/2013, the projects POCI-01-0145-FEDER-028736, PTDC/MAR-BIO/4694/2014 (POCI-01-0145-FEDER-016790; 3599-PPCDT), and INNOVMAR—Innovation and Sustainability in the Management and Exploitation of Marine Resources, reference NORTE-01-0145-FEDER-000035, Research Line NOVELMAR. The work was also funded by FEDER—Fundo Europeu de Desenvolvimento Regional através do COMPETE 2020—Programa Operacional para a Competitividade e Internacionalização (POCI), Portugal 2020, and by Portuguese fundings through FCT—Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Inovação, no âmbito do projeto “Instituto de Investigação e Inovação em Ciências da Saúde “(POCI—01-0145-FEDER—007274)”

    Effect of Indole-Containing Pyrazino[2,1-b]quinazoline-3,6-diones in the Virulence of Resistant Bacteria

    Get PDF
    Drug resistance is rising to alarming levels, constituting one of the major threats to global health. The overexpression of efflux pumps and the formation of biofilms constitute two of the most common resistance mechanisms, favoring the virulence of bacteria. Therefore, the research and development of effective antimicrobial agents that can also counteract resistance mechanisms are extremely important. Pyrazino[2,1-b]quinazoline-3,6-diones, from marine and terrestrial organisms and simpler synthetic analogues, were recently disclosed by us as having relevant antimicrobial properties. In this study, using a multi-step approach, it was possible to synthesize new pyrazino[2,1-b]quinazoline-3,6-diones focusing on compounds with fluorine substituents since, to the best of our knowledge, the synthesis of fluorinated fumiquinazoline derivatives had not been attempted before. The new synthesized derivatives were screened for antibacterial activity and, along with previously synthetized pyrazino[2,1-b]quinazoline-3,6-diones, were characterized for their antibiofilm and efflux-pump-inhibiting effects against representative bacterial species and relevant resistant clinical strains. Several compounds showed relevant antibacterial activity against the tested Gram-positive bacterial species with MIC values in the range of 12.5–77 μM. Furthermore, some derivatives showed promising results as antibiofilm agents in a crystal violet assay. The results of the ethidium bromide accumulation assay suggested that some compounds could potentially inhibit bacterial efflux pumps. © 2023 by the authors
    corecore