12 research outputs found

    Skin and muscle receptors shape coordinated fast feedback responses in the upper limb

    Get PDF
    © 2021 Elsevier Ltd Despite many real-world examples where skin and muscle receptors must function in concert to support movement control, responses based on these sensory modalities are usually separated from one another in laboratory studies. Proprioception is often considered the domain of muscle receptors, whereas the skin\u27s function is often assumed to be discriminative touch. This distinction understates the extent to which sensory feedback from skin and muscle work together to shape successful movement control. Here we review the functional characteristics and similarities between fast feedback responses of the upper limb originating from muscle stretch and skin slip. We place an emphasis on recent evidence of their highly inter-dependent nature and how they build on one another to implement common tasks like object manipulation in the face of external forces applied to the arm or hand

    Stretch reflexes

    No full text
    Many of us know about stretch reflexes from the doctor\u27s office, when a physician taps the tendon near our kneecap to elicit a quick knee extension. This procedure is used as a diagnostic tool to determine the integrity of the spinal cord and the extension response it elicits may seem otherwise useless. In fact, the tendon tap taps into one aspect of a critical building block of mammalian motor control, the stretch reflexes. Stretch reflexes are often thought to quickly resist unexpected changes in muscle length via a very simple circuit in the spinal cord, and this is one circuit that the tendon tap engages. It turns out, however, that stretch reflexes support a myriad of functions and are highly flexible. Under naturalistic conditions, stretch reflexes are shaped by peripheral physiology and engage neural circuits spanning the spinal cord, brainstem and cerebral cortex. In this Primer, we outline what is currently known about stretch reflex function and its underlying mechanisms, with a specific focus on how the cascade of nested responses collectively known as stretch reflexes interact with and build off of one another to support real-world motor behavior

    Voluntary modification of rapid tactile-motor responses during reaching differs from its visuomotor counterpart

    No full text
    People commonly hold and manipulate a variety of objects in everyday life, and these objects have different physical properties. To successfully control this wide range of objects, people must associate new patterns of tactile stimuli with appropriate motor outputs. We performed a series of experiments investigating the extent to which people can voluntarily modify tactile-motor associations in the context of a rapid tactile-motor response guiding the hand to a moving target (previously described in Pruszynski JA, Johansson RS, Flanagan JR. Curr Biol 26: 788 –792, 2016) by using an anti-reach paradigm in which participants were instructed to move their hands in the opposite direction of a target jump. We compared performance to that observed when people make visually guided reaches to a moving target (cf. Day BL, Lyon IN. Exp Brain Res 130: 159 –168, 2000; Pisella L, Grea H, Tilikete C, Vighetto A, Desmurget M, Rode G, Boisson D, Rossetti Y. Nat Neurosci 3: 729 –736, 2000). When participants had visual feedback, motor responses during the anti-reach task showed early automatic responses toward the moving target before later modification to move in the instructed direction. When the same participants had only tactile feedback, however, they were able to suppress this early phase of the motor response, which occurs \u3c100 ms after the target jump. Our results indicate that while the tactile motor and visual motor systems both support rapid responses that appear similar under some conditions, the circuits underlying responses show sharp distinctions in terms of their malleability. NEW & NOTEWORTHY When people reach toward a visual target that moves suddenly, they automatically correct their reach to follow the object; even when explicitly instructed not to follow a moving visual target, people exhibit an initial incorrect movement before moving in the correct direction. We show that when people use tactile feedback, they do not show an initial incorrect response, even though early muscle activity still occurs

    Force-stabilizing synergies can be retained by coordinating sensory-blocked and sensory-intact digits.

    No full text
    The present study examined the effects of selective digital deafferentation on the multi-finger synergies as a function of total force requirement and the number of digits involved in isometric pressing. 12 healthy adults participated in maximal and sub-maximal isometric pressing tasks with or without digital anesthesia to selective digits from the right hand. Our results indicate that selective anesthesia paradigm induces changes in both anesthetized (local) and non-anesthetized (non-local) digits' performance, including: (1) decreased maximal force abilities in both local and non-local digits; (2) reduced force share during multi-finger tasks from non-local but not local digits; (3) decreased force error-making; and (4) marginally increased motor synergies. These results reinforce the contribution of somatosensory feedback in the process of maximal voluntary contraction force, motor performance, and indicate that somatosensation may play a role in optimizing secondary goals during isometric force production rather than ensuring task performance
    corecore