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Skin and muscle receptors shape coordinated fast
feedback responses in the upper limb
Christopher J Forgaard1,2, Sasha Reschechtko1,3,4,
Paul L Gribble1,2,3,5 and J Andrew Pruszynski1,2,3,4,5

Despite many real-world examples where skin and muscle

receptors must function in concert to support movement control,

responses based on these sensory modalities are usually

separated from one another in laboratory studies. Proprioception

is often considered the domain of muscle receptors, whereas the

skin’s function is often assumed to be discriminative touch. This

distinction understates the extent to which sensory feedback

from skin and muscle work together to shape successful

movement control. Here we review the functional characteristics

and similarities between fast feedback responses of the upper

limb originating from muscle stretch and skin slip. We place an

emphasis on recent evidence of their highly inter-dependent

nature and how they build on one another to implement common

tasks like object manipulation in the face of external forces

applied to the arm or hand.
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Introduction
Holding onto an object in a dynamic environment

requires constant adjustments to grip force and arm

orientation. Following a sudden bump to the arm or pull

on the object, the CNS rapidly activates finger muscles to

increase grip force and muscles throughout the arm to

stabilize or adjust the limb to a desired orientation. These

‘fast feedback responses’—which occur earlier than

humans can voluntarily respond to an external stimulus

(i.e. <100 ms)—are elicited by cutaneous receptors

detecting object slip and muscle receptors activated by

stretch. Despite many real-world scenarios where sensory

feedback from both skin and muscle receptors must be

rapidly integrated to successfully maintain grasp, labora-

tory investigations of grip responses (triggered by object

slip) and stretch reflexes (evoked by muscle stretch) are

typically conducted separately. This historical separation

partly stems from stretch reflex studies typically investi-

gating proximal muscles whereas slip studies typically

focus on the hand. In this review, we consider how

sensory feedback from mechanoreceptors in the glabrous

skin of the fingertips and muscle receptors throughout the

upper limb function together to produce coordinated fast

feedback responses to maintain an object in grasp.

Fast feedback responses to mechanical
stimuli
Fast feedback responses evoked by stretching upper limb

muscles are classically divided into two epochs in the

stretched muscle (Figure 1). Occurring first is the short-

latency response (SLR: �20�50 ms) which results from

activation of Ia afferents acting over a spinal pathway

[1,2]. Immediately following is the long-latency response

(LLR; �50�100 ms) produced by continued engagement

of spinal pathways via Ia and other afferents and input

from supraspinal pathways [3,4,5�]. The supraspinal com-

ponent includes a transcortical pathway involving primary

motor cortex (M1), shown in humans via noninvasive

neural recordings [6] and brain stimulation [7],

and electrophysiology and lesion studies in non-human

primates [7–9]. Other supraspinal regions contribute

including dorsal premotor cortex [9], supplementary

motor area [10], posterior parietal cortex [9], cerebellum

[11], and reticular formation [12,13].

The SLR is functionally limited and relatively inflexible,

though it can be modified according to changes in body

configuration [14] or with extensive training [15,16].

Presumably because the LLR is generated in part by

supraspinal circuits, it can be strongly influenced by many

factors including the volitional intent of the participant

[17,18]. For example, individuals can modulate the

LLR according to verbal instruction of how to respond

to the perturbation [3,19,20], as well as visuospatial goals

[20–22]. The classic manipulation involves asking

participants to either ‘resist’ or ‘let go’ upon receiving

the perturbation. The resist instruction results in a large

LLR whereas the response is reduced and sometimes

even fully inhibited on let go trials [3]. Sophistication

of the LLR is further shown by its ability to scale
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continuously with intended movement distance [22],

intersegmental limb dynamics [23–26] including arm

orientation [21], and ongoing decisional processes

[27–30].

When holding an object in precision grip, rapid changes in

the force that the object exerts against the fingertips

elicits a fast feedback response in intrinsic and extrinsic

hand muscles that increase grip force (e.g. first dorsal

interossei, flexor pollicis brevis, adductor pollicis, flexor

digitorum superficialis) [31,32]. This grip response (see

Figure 1b) originates from cutaneous low-threshold

mechanoreceptors detecting slip against the fingertips

[31,33–36]. Given the similar latency to the LLR, it

makes sense to wonder whether a transcortical route

involving M1 also underlies this response. Studies using

EEG [37], fMRI [38], transcranial magnetic stimulation

[34], and single-cell recordings [39] all support the

involvement of M1. However, while M1 can influence

the grip response once underway [34], modulation of

corticospinal excitability occurs after the grip response

has been initiated [33,34] and the response is largely

preserved in patients with impaired contralateral corti-

cospinal projections from M1 [40]. The evidence thus

suggests that the grip response is likely initiated subcor-

tically [33] possibly involving cerebellum [38,41,42] and/

Coordinated fast feedback responses Forgaard et al. 199

Figure 1

(a) (b)
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Muscle responses evoked by mechanical perturbations.

(a) Cartoon of a typical mechanical perturbation causing rapid elbow extension. A short-latency (SLR) response appears in the biceps brachii EMG

recording between 20–50 ms, followed by a long-latency response (LLR; 50–100 ms), and voluntary activity (>100 ms). The evoked muscle activity

counteracts the induced motion from the perturbation, ultimately producing elbow flexion. (b) Cartoon of a typical downward mechanical

perturbation to a cup held in grasp. The rapid increase in object load force against the fingertips induces slip of the cup. A grip response (50–

150 ms) appears in intrinsic and extrinsic hand muscles contributing to grip force production. Shown here is EMG activity from first dorsal

interossei (FDI) and adductor pollicis (ADP), hand muscles commonly recorded in grip response investigations [32,51��].

www.sciencedirect.com Current Opinion in Physiology 2021, 20:198–205



or spinal circuits [43–46,47�]. More evidence for a subcor-

tical origin comes from the finding that the grip response

seems less sensitive to arbitrary modulation than the

LLR: rather, it optimally functions to prevent dropping

objects across a range of situations. For example, a stron-

ger response is evoked when holding a more slippery

object [48], following faster slip perturbations [31,32], or

slips in more precarious directions (i.e. with gravity or

away from the hand [49]). However, unlike the LLR, the

grip response is not sensitive to verbal instruction: asking

participants to “let go” of an object upon perceiving

the slip stimulus has minimal influence over the rapid

activation of finger/thumb flexors and concomitant

increase in grip force [50].

Despite a traditional distinction that skin receptors underlie

the grip response and muscle spindles produce the

LLR—most limb or handheld object perturbations, espe-

cially during object manipulation, activate both receptor

types. Cutaneous  receptors display positional sensitivity

albeit with lower fidelity than muscle receptors [52,53,54�]
and single cutaneous (FAI, FAII, and SAII) afferents (but

not spindle afferents) have been shown to have strong

coupling with motoneurons innervating the hand [55,56].

In investigations of stretch reflexes, cutaneous receptors are

also activated as forces are applied to the hand or arm to

induce joint rotation [2,57,cf.58]. Moreover, the grip

response can also be evoked by mechanically  stretching

finger [59] or thumb flexor muscles [60]. Depending on

the behavioural goal or postural constraints, sensory feed-

back from upper limb muscle and skin afferents can also be

flexibly routed to produce fast feedback responses in many

muscles throughout the perturbed [21,23,32,61,62��],
contralateral [42,63–67], and even lower limbs [65,68].

Coordinating feedback across the arm and
hand
Mechanical perturbations during object manipulation can

manifest as either external forces acting on the object or

directly on the arm. Relative motion between the object

and hand can thus arise from at least two distinct move-

ment patterns. In one scenario, the object is pulled away

from your hand—as when your dog takes off running

while you hold the leash. This causes slip against the

fingers while forces from the leash are also transmitted

throughout the arm. Alternatively, a perturbation deliv-

ered directly to your arm, such as when holding a cup of

coffee, results not only in arm muscle stretch, but also

finger slip against the object due to the object’s inertia. In

order to compensate for these perturbations, we need to

make corrections to hand position (by moving the arm)

and to grip force (to hold onto the object).

One approach to understanding these complex interac-

tions is to experimentally dissociate object slip from

forces transmitted to the arm. Hernandez-Castillo

et al. [62��] recently investigated how tactile feedback

from the fingertips is routed to produce responses in

proximal arm muscles. These authors showed that a

finger slip stimulus can affect the fast feedback response

in shoulder flexor and extensor muscles—but that this

relationship is specific to the relative directions of object

slip and arm movement. When the stimulus mimicked

an object slipping out of the hand, participants

responded more quickly by moving their arm in the

same direction as the slip (i.e. by activating the clavicular

head of pectoralis major), as if they were moving to keep

their hand on the object. In addition, they showed that

the LLR observed in shoulder muscles is modified by

the presence of a slip stimulus at the fingertips. On these

trials, a shoulder extension perturbation was always

delivered—but critically was sometimes also paired with

a finger slip stimulus in the opposite direction (i.e. out of

the hand). Participants showed a larger response in the

pectoralis muscle to the combined shoulder perturbation

and finger slip stimuli (compared to a perturbation-only

stimulus), the scenario mimicking what would happen if

that torque were pulling their arm off of a handheld

object. Together, these results indicate that afferent

feedback from the fingers can be quickly integrated

with proprioceptive feedback from the arm to direct

rapid, behaviourally relevant responses. An important

topic for future investigation is understanding how

different regions such as the thalamus or primary sensory

cortex integrate somatosensory and proprioceptive feed-

back in order to contribute to fast feedback response

modulation [62��,69].

As discussed previously, the LLR displays a level of task

dependency similar to voluntary control. Another recent

study probed whether goal-dependent modulation occurs

between the LLR in arm muscles and grip response

when moving an object to different spatial goals [51��].
In this study, mechanical perturbations were delivered

to the shoulder and displaced the arm either towards a

target (requiring minimal intervention; Figure 2, IN

target, blue profiles) or away from a target (requiring

vigorous intervention; Figure 2, OUT target, red profiles).

Perturbation direction was not known in advance.

Following perturbations that displaced the shoulder into

flexion, goal-dependent LLR modulation was observed

in the posterior deltoid both with and without the pres-

ence of a handheld object (Figure 2d). On trials where

participants held an object using a precision grip, the

shoulder perturbation also evoked a grip response in hand

muscles (first dorsal interossei, flexor pollicis brevis, and

adductor pollicis; See Figure 2c). Importantly, this grip

response exhibited goal-dependent modulation simulta-

neously with modulation of the LLR in posterior deltoid

(beginning at 60 ms): the more vigorous arm movements

following a perturbation away from a target produced

larger inertial load forces against the fingertips, and

participants showed a stronger grip response on these

trials to prevent the object from slipping away.

200 Proprioception
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At first glance, these results from Crevecoeur et al. [51��]
appear to fit well with observations of coordination

between arm movements and grasp during self-initiated

object manipulation [70,71]. It is commonly proposed that

the CNS predicts the outcome of upcoming actions

including the object load forces that arise as a result of

voluntary arm movements [72]. This internal prediction

allows the CNS to modulate grip forces in parallel with

changing load forces against the fingertips. However, if

this explanation were to hold for the reactive control of

arm and hand action, it would predict either a delay in the

modulation of grip response with respect to the posterior

deltoid LLR, or a delay in both responses. This is because

generation of the modulated grip response motor com-

mands must await internal predictions generated from the

production of modulated shoulder extensor motor com-

mands. Additionally, the CNS must account for the fact

that efferent signals have to travel a further distance to

reach intrinsic hand muscles, a delay estimated at �10 ms

relative to posterior deltoid [51��]. It is important to

emphasize that neither of these outcomes were observed

by Crevecoeur et al. [51��]. While hand and arm responses

Coordinated fast feedback responses Forgaard et al. 201

Figure 2

(a) (b)

(d)(c)
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Coordination of fast feedback responses between the arm and hand.

(a) Experimental setup where a shoulder flexion torque is applied and participants either allow this perturbation to move their hand into a target

(IN, blue) or they counteract the torque by extending the shoulder and moving in the opposite direction to a target (OUT, red). Note that an object

is held between the index finger and thumb. Also note that perturbation direction was unknown in advance. This figure only shows data from

shoulder flexion perturbation trials. (b) Elbow displacement data for the two target conditions. (c) Hand muscle activity (averaged signal from first

dorsal interossei, adductor pollicis, and flexor pollicis brevis). R1 refers to the SLR epoch. R2 is the first half of the LLR epoch (45�75 ms). R3 is

the second half of the LLR epoch (75–105 ms). (d) Shoulder muscle (posterior deltoid) EMG activity. Black profile represents the difference

between OUT and IN. Reproduced with permission from Ref. [51��].
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occurred simultaneously, they were not delayed with

respect to arm movements performed when the fingers

were not holding onto an object.

One possible explanation for this observation is that the

CNS fully pre-plans hand responses for multiple possible

arm actions and then selects an appropriate response after

the perturbation has begun. Although this may be a

tenable strategy in experimental conditions where parti-

cipants know the perturbation they may experience, it is

less likely when considering the great variety of possible

arm and hand perturbations we experience in everyday

life, and the apparent behavioural and directional speci-

ficity of observed arm and grasp responses. It is also

inconsistent with the rapid flexibility of upper limb fast

feedback responses following unpredictable arm pertur-

bations [22,73]. As an alternative to fully pre-planning

multiple hand responses, it was suggested that during the

movement planning phase (before a perturbation), the

CNS couples together motor commands for hand and arm

muscles [51��]. Critically, part of the planning process also

involves specifying how sensory feedback will be rapidly

transformed into motor output to efficiently achieve the

behavioural goal. While supraspinal regions have been

the primary target for investigations into the source(s) of

fast feedback response flexibility, coordination between

the LLR and the grip response may also rely on descend-

ing modulatory commands onto spinal circuits that rapidly

integrate proprioceptive and cutaneous inputs.

An important target for future research is identification of

the neural circuitry permitting rapid coordination of fast

feedback responses between the arm and hand, such as in

the object manipulation studies described in this review.

Numerous studies have highlighted a transcortical path-

way through M1 as a source of goal-dependent LLR

modulation in upper-limb muscles [7,9,74]. Because of

the strong monosynaptic corticospinal projections onto

hand motoneurons, it is also commonly suggested that

M1 has an important role in controlling dexterous finger

movements [75]. Interestingly, evidence suggests that

spinal premotor interneurons are also critical for grasp

control [43,44,46,47�,76] and it was recently shown that

these spinal neurons are strongly activated by a mechan-

ical finger stretch perturbation at an appropriate latency

to contribute to the LLR in finger muscles [5�]. However,

to our knowledge, the role of spinal interneurons on the

grip response following object slip has not been reported.

Given that premotor interneurons in cervical spinal cord

receive input from somatosensory and proprioceptive

afferents [5�,47�], descending signals from higher centres

[77], and make divergent connections onto multiple

intrinsic hand muscles [44], they are a prime candidate

to contribute to goal-dependent modulation of the grip

response. Exactly how premotor interneurons may

support goal-dependent grip modulation simultaneously

with LLR modulation in proximal arm muscles remains

unresolved and should be investigated in future

experiments.

In addition to identifying the neural circuitry coordinating

the grip response and the LLR, it is important to investi-

gate feedback response coordination in scenarios that

more closely mimic normal behaviour. Most studies

conducted on the grip response involve objects held in

precision grip [33]; however, in real-world scenarios,

we often interact with objects using power grip or

multi-finger prismatic grasp. Recent work has shown

different neural control between grip types [78–81],

and appropriate responses to a slipping object might differ

when the thumb is not used in opposition to the other

digits. Coordination of responses might also differ

because power grip appears well-conserved over an

evolutionary timescale, whereas precision grip is thought

to rely on phylogenetically newer brain structures and

descending pathways that exist only in some dexterous

primates (including humans) [82].

While this review has focused on fast feedback responses

in the upper limb, future work should also consider

drawing comparisons to responses in the lower limb. Fast

feedback responses evoked by mechanical postural

perturbations also rely on the integration of cutaneous

feedback and proprioceptive feedback from muscle

receptors [83], and many postural reactions can be evoked

by cutaneous stimulation of the leg or foot [84].

Highlighting similarities and differences between limbs

may lead to a better understanding of the specialized role

different sources of feedback have in subserving various

fast feedback responses.

The LLR and the grip response are two of the fastest

expressions of goal-directed behaviour. Despite their

close relationship in many ecological activities, they

have been studied separately for many years, implicitly

reinforcing the view that muscle receptors are solely

responsible for the LLR whereas cutaneous receptors

are only engaged in the grip response. We are now

beginning to understand that these responses are in fact

highly inter-dependent and it is important to consider

both the role skin receptors play in shaping the LLR and

the effect muscle spindles have on the grip response.
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