4 research outputs found

    Validation of a single biopsy approach and bolus protein feeding to determine myofibrillar protein synthesis in stable isotope tracer studies in humans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Minimizing the number of muscle biopsies has important methodological implications and minimizes subject discomfort during a stable isotope amino acid infusion. We aimed to determine the reliability of obtaining a single muscle biopsy for the calculation of muscle protein fractional synthetic rate (FSR) as well as the amount of incorporation time necessary to obtain that biopsy after initiating a stable isotope infusion (Study 1). The calculation of muscle protein FSR requires tracer steady-state during the stable isotope infusion. Therefore, a second aim was to examine if steady-state conditions are compromised in the precursor pools (plasma free or muscle intracellular [IC]) after ingestion of a tracer enriched protein drink and after resistance exercise (Study 2).</p> <p>Methods</p> <p>Sixteen men (23 Ā± 3 years; BMI = 23.8 Ā± 2.2 kg/m<sup>2</sup>, means Ā± SD) were randomized to perform Study 1 or Study 2 (n = 8, per study). Subjects received a primed, constant infusion of L-[<it>ring</it>-<sup>13</sup>C<sub>6</sub>]phenylalanine coupled with muscle biopsies of the vastus lateralis to measure rates of myofibrillar protein synthesis (MPS). Subjects in Study 2 were fed 25 g of whey protein immediately after an acute bout of unilateral resistance exercise.</p> <p>Results</p> <p>There was no difference (P = 0.3) in rates of MPS determined using the steady-state precursor-product equation and determination of tracer incorporation between sequential biopsies 150 min apart or using plasma protein as the baseline enrichment, provided the infusion length was sufficient (230 Ā± 0.3 min). We also found that adding a modest amount of tracer (4% enriched), calculated based on the measured phenylalanine content of the protein (3.5%) in the drink, did not compromise steady-state conditions (slope of the enrichment curve not different from zero) in the plasma free or, more importantly, the IC pool (both P > 0.05).</p> <p>Conclusions</p> <p>These data demonstrate that the single biopsy approach yields comparable rates of muscle protein synthesis, provided a longer incorporation time is utilized, to that seen with a traditional two biopsy approach. In addition, we demonstrate that enriching protein-containing drinks with tracer does not disturb isotopic steady-state and thus both are reliable techniques to determine rates of MPS in humans.</p

    Dose-dependent responses of myofibrillar protein synthesis with beef ingestion are enhanced with resistance exercise in middle-aged men

    No full text
    Aging impairs the sensitivity of skeletal muscle to anabolic stimuli, such as amino acids and resistance exercise. Beef is a nutrient-rich source of dietary protein capable of stimulating muscle protein synthesis (MPS) rates in older men at rest. To date, the doseā€“response of myofibrillar protein synthesis to graded ingestion of protein-rich foods, such as beef, has not been determined. We aimed to determine the doseā€“response of MPS with and without resistance exercise to graded doses of beef ingestion. Thirty-five middle-aged men (59 Ā± 2 years) ingested 0 g, 57 g (2 oz; 12 g protein), 113 g (4 oz; 24 g protein), or 170 g (6 oz; 36 g protein) of (15% fat) ground beef (n = 7 per group). Subjects performed a bout of unilateral resistance exercise to allow measurement of the fed state and the fed plus resistance exercise state within each dose. A primed constant infusion of l-[1-13C]leucine was initiated to measure leucine oxidation and of l-[ring-13C6]phenylalanine was initiated to measure myofibrillar MPS. Myofibrillar MPS was increased with ingestion of 170 g of beef to a greater extent than all other doses at rest and after resistance exercise. There was more leucine oxidation with ingestion of 113 g of beef than with 0 g and 57 g, and it increased further after ingestion of 170 g of beef (all p &lt; 0.05). Ingestion of 170 g of beef protein is required to stimulate a rise in myofibrillar MPS over and above that seen with lower doses. An isolated bout of resistance exercise was potent in stimulating myofibrillar MPS, and acted additively with feeding. </jats:p

    Differential stimulation of myofibrillar and sarcoplasmic protein synthesis with protein ingestion at rest and after resistance exercise

    No full text
    We aimed to determine whether there is a differential stimulation of the contractile myofibrillar and the cellular sarcoplasmic proteins after ingestion of protein and how this is affected by resistance exercise. Fasted (FAST) muscle protein synthesis was measured in seven healthy young men with a primed constant infusion of l-[ring-13C6]phenylalanine. Participants then performed an intense bout of unilateral resistance exercise followed by the consumption of 25 g of whey protein to maximally stimulate protein synthesis. In the rested (FED) leg myofibrillar (MYO) protein synthesis was elevated (P < 0.01) above FAST at 3 h (āˆ¼163%) but not at 1 and 5 h (P > 0.05). In contrast, MYO protein synthesis in the exercised (FED-EX) leg was stimulated above FAST at 1, 3 and 5 h (āˆ¼100, 216, and 229%, respectively; P < 0.01) with the increase at 5 h being greater than FED (P < 0.01). Thus, the synthesis of muscle contractile proteins is stimulated by both feeding and resistance exercise early (1 h) but has a greater duration and amplitude after resistance exercise. Sarcoplasmic (SARC) protein synthesis was similarly elevated (P < 0.01) above FAST by āˆ¼104% at 3 h in both FED and FED-EX suggesting SARC protein synthesis is stimulated by feeding but that this response is not augmented by resistance exercise. In conclusion, myofibrillar and sarcoplasmic protein synthesis are similarly, but transiently, stimulated with protein feeding. In contrast, resistance exercise rapidly stimulates and sustains the synthesis of only the myofibrillar protein fraction after protein ingestion. These data highlight the importance of measuring the synthetic response of specific muscle protein fractions when examining the effects of exercise and nutrition
    corecore