55 research outputs found

    Mapping of B-cell epitopic sites and delineation of functional domains on the hemagglutinin-neuraminidase protein of peste des petits ruminants virus

    Get PDF
    A recombinant baculovirus expressing membrane bound form of hemagglutinin-neuraminidase (HN) protein of peste des petits ruminants virus (PPRV) was employed to generate monoclonal antibodies (mAbs) against PPRV-HN protein. Four different mAbs were employed for mapping of regions on HN carrying B-cell epitopes using deletion mutants of PPRV-HN and RPV-H proteins expressed in Escherichia coli as well as PPRV-HN deletion proteins expressed transiently in mammalian cells. The immuno-reactivity pattern indicated that all mAbs bind to two discontinuous regions of amino acid sequence 263-368 and 538-609 and hence the epitopes identified are conformation-dependent. The binding regions for three mAbs were shown to be immunodominant employing competitive ELISA with vaccinated sheep sera. Delineation of functional domains on PPRV-HN was carried out by assessing the ability of these mAbs to inhibit neuramindase activity and hemagglutination activity. Two mAbs inhibited NA activity by more than 63% with substrate N-acetyl neuraminolactose, while with Fetuin one mAb showed inhibition of NA activity (95%). Of the three antigenic sites identified based on competitive inhibition assay, site 2 could be antigenically separated into 2a and 2b based on inhibition properties. All the four mAbs are virus neutralizing and recognized PPRV-HN in immunofluorescence assay

    MHC class IIâ expressing thymocytes suppress invariant NKT cell development

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141892/1/imcb200878.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141892/2/imcb200878-sup-0001.pd

    Abnormal Changes in NKT Cells, the IGF-1 Axis, and Liver Pathology in an Animal Model of ALS

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a rapidly progressing fatal neurodegenerative disorder characterized by the selective death of motor neurons (MN) in the spinal cord, and is associated with local neuroinflammation. Circulating CD4+ T cells are required for controlling the local detrimental inflammation in neurodegenerative diseases, and for supporting neuronal survival, including that of MN. T-cell deficiency increases neuronal loss, while boosting T cell levels reduces it. Here, we show that in the mutant superoxide dismutase 1 G93A (mSOD1) mouse model of ALS, the levels of natural killer T (NKT) cells increased dramatically, and T-cell distribution was altered both in lymphoid organs and in the spinal cord relative to wild-type mice. The most significant elevation of NKT cells was observed in the liver, concomitant with organ atrophy. Hepatic expression levels of insulin-like growth factor (IGF)-1 decreased, while the expression of IGF binding protein (IGFBP)-1 was augmented by more than 20-fold in mSOD1 mice relative to wild-type animals. Moreover, hepatic lymphocytes of pre-symptomatic mSOD1 mice were found to secrete significantly higher levels of cytokines when stimulated with an NKT ligand, ex-vivo. Immunomodulation of NKT cells using an analogue of α-galactosyl ceramide (α-GalCer), in a specific regimen, diminished the number of these cells in the periphery, and induced recruitment of T cells into the affected spinal cord, leading to a modest but significant prolongation of life span of mSOD1 mice. These results identify NKT cells as potential players in ALS, and the liver as an additional site of major pathology in this disease, thereby emphasizing that ALS is not only a non-cell autonomous, but a non-tissue autonomous disease, as well. Moreover, the results suggest potential new therapeutic targets such as the liver for immunomodulatory intervention for modifying the disease, in addition to MN-based neuroprotection and systemic treatments aimed at reducing oxidative stress

    CD1d-Expressing Breast Cancer Cells Modulate NKT Cell-Mediated Antitumor Immunity in a Murine Model of Breast Cancer Metastasis

    Get PDF
    Tumor tolerance and immune suppression remain formidable obstacles to the efficacy of immunotherapies that harness the immune system to eradicate breast cancer. A novel syngeneic mouse model of breast cancer metastasis was developed in our lab to investigate mechanisms of immune regulation of breast cancer. Comparative analysis of low-metastatic vs. highly metastatic tumor cells isolated from these mice revealed several important genetic alterations related to immune control of cancer, including a significant downregulation of cd1d1 in the highly metastatic tumor cells. The cd1d1 gene in mice encodes the MHC class I-like molecule CD1d, which presents glycolipid antigens to a specialized subset of T cells known as natural killer T (NKT) cells. We hypothesize that breast cancer cells, through downregulation of CD1d and subsequent evasion of NKT-mediated antitumor immunity, gain increased potential for metastatic tumor progression.In this study, we demonstrate in a mouse model of breast cancer metastasis that tumor downregulation of CD1d inhibits iNKT-mediated antitumor immunity and promotes metastatic breast cancer progression in a CD1d-dependent manner in vitro and in vivo. Using NKT-deficient transgenic mouse models, we demonstrate important differences between type I and type II NKT cells in their ability to regulate antitumor immunity of CD1d-expressing breast tumors.The results of this study emphasize the importance of determining the CD1d expression status of the tumor when tailoring NKT-based immunotherapies for the prevention and treatment of metastatic breast cancer

    Tailored design of NKT-stimulatory glycolipids for polarization of immune responses

    Get PDF
    Natural killer T (NKT) cell is a distinct population of T lymphocytes that can rapidly release massive amount of Th1 and Th2 cytokines upon the engagement of their T cell receptor with glycolipids presented by CD1d. The secreted cytokines can promote cell-mediated immunity to kill tumor cells and intracellular pathogens, or suppress autoreactive immune cells in autoimmune diseases. Thus, NKT cell is an attractive target for developing new therapeutics to manipulate immune system. The best-known glycolipid to activate NKT cells is α-galactosylceramide (α-GalCer), which has been used as a prototype for designing new NKT stimulatory glycolipids. Many analogues have been generated by modification of the galactosyl moiety, the acyl chain or the phytosphingosine chain of α-GalCer. Some of the analogues showed greater abilities than α-GalCer in polarizing immune responses toward Th1 or Th2 dominance. Among them, several analogues containing phenyl groups in the lipid tails were more potent in inducing Th1-skewed cytokines and exhibited greater anticancer efficacy than α-GalCer. Analyses of the correlation between structure and activity of various α-GalCer analogues on the activation of iNKT cell revealed that CD1d–glycolipid complexes interacted with the same population of iNKT cell expressing similar T-cell receptor Vβ as α-GalCer. On the other hand, those phenyl glycolipids with propensity for Th1 dominant responses showed greater binding avidity and stability than α-GalCer for iNKT T-cell receptor when complexed with CD1d. Thus, it is the avidity and stability of the ternary complexes of CD1d-glycolipid-iNKT TCR that dictate the polarity and potency of immune responses. These findings provide a key to the rationale design of immune modulating glycolipids with desirable Th1/Th2 polarity for clinical application. In addition, elucidation of α-GalCer-induced anergy, liver damage and accumulation of myeloid derived suppressor cells has offered explanation for its lacklustre anti-cancer activities in clinical trials. On other hand, the lack of such drawbacks in glycolipid analogues containing phenyl groups in the lipid tails of α-GalCer coupled with the greater binding avidity and stability of CD1d-glycolipid complex for iNKT T-cell receptor, account for their superior anti-cancer efficacy in tumor bearing mice. Further clinical development of these phenyl glycolipids is warranted

    Recombinant hemagglutinin protein of rinderpest virus expressed in insect cells induces cytotoxic T-cell responses in cattle

    No full text
    Rinderpest virus (RPV), a member of the genus Morbillivirus within the Paramyxoviridae family, causes a highly contagious and often fatal disease known as rinderpest in wild and domestic ruminants. The envelope of the virus contains two surface glycoproteins, namely the hemagglutinin (H) and the fusion (F) proteins, both of which have been shown to confer protective immunity in animals. In this paper, we demonstrate that single administration of low doses of recombinant H protein of RPV expressed in insect cells in the form of extracellular virus induces long lasting bovine leukocyte antigen class I restricted cytotoxic T-cell (CTL) responses in cattle in the absence of adjuvant. This is the first report of CTL responses in cattle against one of the protective antigens of RPV

    Immune responses in goats to recombinant hemagglutinin-neuraminidase glycoprotein of Peste des petits ruminants virus: identification of a T cell determinant

    No full text
    Peste des petits ruminants virus (PPRV), a member of the genus Morbillivirus within the family Paramyxoviridae, causes a fatal disease 'peste des petits ruminants' in goats and sheep. This enveloped virus is antigenically closely related to rinderpest virus (RPV), which causes a similar but distinct disease in large ruminants. PPRV harbors two major surface glycoproteins, the hemagglutinin-neuraminidase (HN) and the fusion (F) proteins. The surface glycoproteins of morbilliviruses are highly immunogenic and confer protective immunity. In this study, we investigated the immune responses generated in goats immunized with low doses of purified recombinant extracellular baculovirus carrying a membrane bound form of the HN protein of PPRV without any adjuvant. We report that the immunized goats develop both humoral and cell-mediated immune responses. Antibodies generated in the immunized animals could neutralize both PPRV and RPV in vitro. Further, using a combination of Escherichia coli expressed deletion mutants of PPRV-HN and RPV-H proteins, and synthetic peptides corresponding to the highly conserved N-terminal sequences of MV-H protein, we have mapped an N-terminal T cell determinant (amino acids 123-137) and a C-terminal domain (amino acids 242-609) harboring potential T cell determinant(s) in goats

    Competitive Enzyme-Linked Immunosorbent Assay Based on Monoclonal Antibody and Recombinant Hemagglutinin for Serosurveillance of Rinderpest Virus

    Get PDF
    A competitive enzyme-linked immunosorbent assay (C-ELISA) which detects antibodies unique to rinderpest virus (RPV) has been developed. This test can differentiate antibodies against RPV and those against peste des petits ruminants virus. The recombinant RPV hemagglutinin (H)-protein C-ELISA (recH C-ELISA) is based on the ability of a well-characterized monoclonal antibody (MAb) produced with the soluble, secreted form of the H protein (Sec H protein) of RPV made in a baculovirus expression system to compete with the binding of RPV antibodies in the serum of vaccinated or infected, recovered animals to the Sec H protein. The B-cell epitope recognized by the MAb corresponds to amino acids 575 to 583 on the H protein, which is not present on the antigenically closely related peste des petits ruminants virus hemagglutinin-neuraminidase protein. Initially, a positive-negative threshold cutoff value for percent inhibition of 34 was established with 500 known RPV-negative serum samples. The recH C-ELISA was developed with the enzyme immunoassay software of a commercial RPV C-ELISA kit. Comparative analysis of the test results for 700 serum samples obtained with the commercial kit gave a sensitivity of 112.4% and a specificity of 72.4%. Variations in percent inhibition values were observed for the two assay systems. These variations may have been due to the undefined amount of antigen present in the commercial kit as well as the use of a different MAb. The recH C-ELISA detected more positive serum samples compared to the number detected by the commercial kit, with the results confirmed by a virus neutralization test. Thus, recH C-ELISA is a sensitive tool for RPV serosurveillance in disease eradication programs
    corecore