121 research outputs found

    Spin and recombination dynamics of excitons and free electrons in p-type GaAs : effect of carrier density

    Full text link
    Carrier and spin recombination are investigated in p-type GaAs of acceptor concentration NA = 1.5 x 10^(17) cm^(-3) using time-resolved photoluminescence spectroscopy at 15 K. At low pho- tocarrier concentration, acceptors are mostly neutral and photoelectrons can either recombine with holes bound to acceptors (e-A0 line) or form excitons which are mostly trapped on neutral acceptors forming the (A0X) complex. It is found that the spin lifetime is shorter for electrons that recombine through the e-A0 transition due to spin relaxation generated by the exchange scattering of free electrons with either trapped or free holes, whereas spin flip processes are less likely to occur once the electron forms with a free hole an exciton bound to a neutral acceptor. An increase of exci- tation power induces a cross-over to a regime where the bimolecular band-to-band (b-b) emission becomes more favorable due to screening of the electron-hole Coulomb interaction and ionization of excitonic complexes and free excitons. Then, the formation of excitons is no longer possible, the carrier recombination lifetime increases and the spin lifetime is found to decrease dramatically with concentration due to fast spin relaxation with free photoholes. In this high density regime, both the electrons that recombine through the e-A0 transition and through the b-b transition have the same spin relaxation time.Comment: 4 pages, 5 figure

    Electron spin quantum beats in positively charged quantum dots: nuclear field effects

    Full text link
    We have studied the electron spin coherence in an ensemble of positively charged InAs/GaAs quantum dots. In a transverse magnetic field, we show that two main contributions must be taken into account to explain the damping of the circular polarization oscillations. The first one is due to the nuclear field fluctuations from dot to dot experienced by the electron spin. The second one is due to the dispersion of the transverse electron Lande g-factor, due to the inherent inhomogeneity of the system, and leads to a field dependent contribution to the damping. We have developed a model taking into account both contributions, which is in good agreement with the experimental data. This enables us to extract the pure contribution to dephasing due to the nuclei.Comment: 10 pages, 6 figure

    Polarization Control of the Non-linear Emission on Semiconductor Microcavities

    Full text link
    The degree of circular polarization (\wp) of the non-linear emission in semiconductor microcavities is controlled by changing the exciton-cavity detuning. The polariton relaxation towards \textbf{K} 0\sim 0 cavity-like states is governed by final-state stimulated scattering. The helicity of the emission is selected due to the lifting of the degeneracy of the ±1\pm 1 spin levels at \textbf{K} 0\sim 0. At short times after a pulsed excitation \wp reaches very large values, either positive or negative, as a result of stimulated scattering to the spin level of lowest energy (+1/1+1/-1 spin for positive/negative detuning).Comment: 8 pages, 3 eps figures, RevTeX, Physical Review Letters (accepted

    Thermal Stability of GaN Investigated by Raman Scattering

    Get PDF

    Direct Observation of the Electron Spin Relaxation Induced by Nuclei in Quantum Dots

    Get PDF
    We have studied the electron spin relaxation in semiconductor InAs/GaAs quantum dots by time-resolved optical spectroscopy. The average spin polarization of the electrons in an ensemble of p-doped quantum dots decays down to 1/3 of its initial value with a characteristic time TDelta[approximate]500 ps, which is attributed to the hyperfine interaction with randomly oriented nuclear spins. We show that this efficient electron spin relaxation mechanism can be suppressed by an external magnetic field as small as 100 mT

    Full Electrical Control of the Electron Spin Relaxation in GaAs Quantum Wells

    Full text link
    The electron spin dynamics in (111)-oriented GaAs/AlGaAs quantum wells is studied by timeresolved photoluminescence spectroscopy. By applying an external field of 50 kV/cm a two-order of magnitude increase of the spin relaxation time can be observed reaching values larger than 30 ns; this is a consequence of the electric field tuning of the spin-orbit conduction band splitting which can almost vanish when the Rashba term compensates exactly the Dresselhaus one. The measurements under transverse magnetic field demonstrate that the electron spin relaxation time for the three space directions can be tuned simultaneously with the applied electric field.Comment: 5 pages, 2 figure

    Electrical spin injection into p-doped quantum dots through a tunnel barrier

    Full text link
    We have demonstrated by electroluminescence the injection of spin polarized electrons through Co/Al2O3/GaAs tunnel barrier into p-doped InAs/GaAs quantum dots embedded in a PIN GaAs light emitting diode. The spin relaxation processes in the p-doped quantum dots are characterized independently by optical measurements (time and polarization resolved photoluminescence). The measured electroluminescence circular polarization is about 15 % at low temperature in a 2T magnetic field, leading to an estimation of the electrical spin injection yield of 35%. Moreover, this electroluminescence circular polarization is stable up to 70 K.Comment: 6 pages, 4 figure
    corecore