3 research outputs found

    Identification of Anisomerous Motor Imagery EEG Signals Based on Complex Algorithms

    Get PDF
    Motor imagery (MI) electroencephalograph (EEG) signals are widely applied in brain-computer interface (BCI). However, classified MI states are limited, and their classification accuracy rates are low because of the characteristics of nonlinearity and nonstationarity. This study proposes a novel MI pattern recognition system that is based on complex algorithms for classifying MI EEG signals. In electrooculogram (EOG) artifact preprocessing, band-pass filtering is performed to obtain the frequency band of MI-related signals, and then, canonical correlation analysis (CCA) combined with wavelet threshold denoising (WTD) is used for EOG artifact preprocessing. We propose a regularized common spatial pattern (R-CSP) algorithm for EEG feature extraction by incorporating the principle of generic learning. A new classifier combining the K-nearest neighbor (KNN) and support vector machine (SVM) approaches is used to classify four anisomerous states, namely, imaginary movements with the left hand, right foot, and right shoulder and the resting state. The highest classification accuracy rate is 92.5%, and the average classification accuracy rate is 87%. The proposed complex algorithm identification method can significantly improve the identification rate of the minority samples and the overall classification performance

    N-Phenyl-2-Pyridone-Derived Endoperoxide Exhibiting Dual Activity by Suppressing both Lung Cancer and Idiopathic Pulmonary Fibrosis

    No full text
    Conventional light-driven photodynamic therapy (PDT) to generate toxic singlet oxygen are potential for cancer therapeutics but limited by the light penetrability and hypoxia tumor. PDT-involved combinational therapy could enhance overall therapeutic effects and reduce drug resistance, while disadvantages such as diverse pharmacokinetics among different ingredients, low active-ingredient loading, inevitably utilization of non-functional components need to be addressed. Here we report an endoperoxide E5 synthesized via ‘in vitro’ PDT could spontaneously deliver singlet oxygen, triplet oxygen and 3-methyl-N-phenyl-2-pyridone as an analogue of pirfenidone (Approved drug for treatment of idiopathic pulmonary fibrosis), showing great potential for treating non-small cell lung cancer and idiopathic pulmonary fibrosis. In aqueous solution, E5 could undergo a clear cycloreversion to afford three components with a half-life time of 8.3 hours and it efficiently suppress the migration and invasion of lung cancer cell as well as the TGF-b1 induced fibrosis in vitro. In vivo experiments suggest that E5 not only efficiently inhibits tumor growth, decreases the HIF-1α protein levels, relieves idiopathic pulmonary fibrosis, but shows good biocompatibility. Many evidence reveal that both singlet oxygen and 3-methyl-N-phenyl-2-pyridone are therapeutic ingredients, and triplet oxygen could relieve tumor hypoxia which is an inevitable issue in conventional PDT. Our study validates that endoperoxides as single active components containing multiple ingredients including singlet oxygen are of exceptionally therapeutic potential
    corecore