3 research outputs found
The fate of leachate of pharmaceuticals like amoxicillin, ibuprofen and caffeine in the soil using soil columns
From an environmental engineering point of view, pharmaceuticals such as antibiotics are a group of man-made chemicals of concern entering the environment in concentrations at which, the health effects are unknown. The problem that may be created by the presence of antibiotics at low concentrations in the environment is the development of antibiotic resistant microorganisms. In this study, three pharmaceutical drugs manufactured in Palestine were studied in waste water and their adsorption in agriculture soil was studied using soil columns. During the study of soil columns, it was noted that the concentration of caffeine in leachate was higher than that of ibuprofen and amoxicillin, as caffeine has higher aqueous solubility. Ibuprofen and amoxicillin were present in leachate with very small concentrations, due to their degradation and decomposition into other substances that may be harmful, and affect the natural properties of soil, groundwater and human health. The decomposition percentages of the pharmaceuticals in the soil columns were 97.82, 97.88 and 86.52% for amoxicillin, ibuprofen and caffeine for one year’s study, respectively. For the fifteen years, the decomposition percentages were 94.04, 96.60 and 93.70% for amoxicillin, ibuprofen and caffeine, respectively
Effects of phototherapy on cartilage structure and inflammatory markers in an experimental model of osteoarthritis
The aim of this study was to evaluate the effects of laser phototherapy on the degenerative modifications on the articular cartilage after the anterior cruciate ligament transection (ACLT) in the knee of rats. Eighty male rats (Wistar) were distributed into four groups: intact control group (IG), injured control group (CG), injured laser treated group at 10 J/cm(2) (L10), and injured laser treated group at 50 J/cm(2) (L50). Animals were distributed into two subgroups, sacrificed in 5 and 8 weeks postsurgery. the ACLT was used to induce knee osteoarthritis in rats. After 2 weeks postsurgery, laser phototherapy initiated and it was performed for 15 and 30 sessions. the histological findings revealed that laser irradiation, especially at 10 J/cm(2), modulated the progression of the degenerative process, showing a better cartilage structure and lower number of condrocytes compared to the other groups. Laser phototherapy was not able to decrease the degenerative process measured by Mankin score and prevent the increase of cartilage thickness related to the degenerative process. Moreover, it did not have any effect in the biomodulation of the expression of markers IL1 beta, tumor necrosis factor-alpha, and metalloprotein-13. Furthermore, laser irradiated animals, at 50 J/cm(2) showed a lower amount of collagen type 1. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Fed Sao Carlos, Dept Physiotherapy, BR-13565902 São Paulo, BrazilAdventist Univ Ctr São Paulo, Dept Physiotherapy, BR-05828001 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Morphol & Pathol, BR-13565902 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Biosci, BR-11060001 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Morphol & Pathol, BR-13565902 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Biosci, BR-11060001 São Paulo, BrazilWeb of Scienc
Bitter triggers acetylcholine release from polymodal urethral chemosensory cells and bladder reflexes
Chemosensory cells in the mucosal surface of the respiratory tract (“brush cells”) use the canonical taste transduction cascade to detect potentially hazardous content and trigger local protective and aversive respiratory reflexes on stimulation. So far, the urogenital tract has been considered to lack this cell type. Here we report the presence of a previously unidentified cholinergic, polymodal chemosensory cell in the mammalian urethra, the potential portal of entry for bacteria and harmful substances into the urogenital system, but not in further centrally located parts of the urinary tract, such as the bladder, ureter, and renal pelvis. Urethral brush cells express bitter and umami taste receptors and downstream components of the taste transduction cascade; respond to stimulation with bitter (denatonium), umami (monosodium glutamate), and uropathogenic Escherichia coli; and release acetylcholine to communicate with other cells. They are approached by sensory nerve fibers expressing nicotinic acetylcholine receptors, and intraurethral application of denatonium reflexively increases activity of the bladder detrusor muscle in anesthetized rats. We propose a concept of urinary bladder control involving a previously unidentified cholinergic chemosensory cell monitoring the chemical composition of the urethral luminal microenvironment for potential hazardous content