6 research outputs found

    The interval between the emergence of pharmacologically synchronized ovarian follicular waves and ovum pickup does not significantly affect in vitro embryo production in Bos indicus, Bos taurus, and Bubalus bubalis

    No full text
    The aim of the present study was to determine the optimal phase of the follicular wave to perform ovum pickup (OPU) for in vitro embryo production (IVEP) in various genetic groups. For this purpose, 27 heifers-nine Bos taurus (Holstein), nine Bos indicus (Nelore), and nine Bubalus bubalis (Mediterranean)-were maintained under the same nutritional, management, and environmental conditions. Heifers within each genetic group were submitted to six consecutive OPU trials with 14-day intersession intervals, at three different phases of the pharmacologically synchronized follicular wave (Day 1, 3, or 5 after follicular wave emergence), in a 3 x 3 crossover design. When OPU was performed at different phases of the pharmacologically synchronized follicular wave (Day 1, 3, or 5), no differences were found in the percent of oocytes recovered (70.5 +/- 3.1%, 75.0 +/- 3.1%, 76.0 +/- 3.2%, respectively; P = 0.41) or blastocyst production rates (19.4 +/- 2.9%, 16.6 +/- 2.9%, 15.9 +/- 2.6%, respectively; P = 0.36). Comparing genetic groups, B indicus showed a higher blastocyst rate (28.3(a) +/- 2.8%; P < 0.01) than B taurus and B bubalis (14.1(b) +/- 2.9% and 10.2(b) +/- 2.0%, respectively). However, only B indicus heifers showed a variation in the number of visualized follicles and the total and viable oocytes along consecutive OPU sessions. In conclusion, different phases of the pharmacologically synchronized ovarian follicular wave did not affect OPU-IVEP in B indicus, B taurus, and B bubalis heifers. Additionally, B indicus heifers showed greater OPU-IVEP efficiency than did the other genetic groups, under the same management conditions.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Distinct behavior of bovine-associated staphylococci species in their ability to resist phagocytosis and trigger respiratory burst activity by blood and milk polymorphonuclear leukocytes in dairy cows

    No full text
    Mastitis affects a high proportion of dairy cows and is still one of the greatest challenges faced by the dairy industry. Staphylococcal bacteria remain the most important cause of mastitis worldwide. We investigated how distinct staphylococcal species evade some critical host defense mechanisms, which may dictate the establishment, severity, and persistence of infection and the outcome of possible therapeutic and prevention interventions. Thus, the present study investigated variations among distinct bovine-associated staphylococci in their capability to resist phagocytosis and to trigger respiratory burst activity of blood and milk polymorphonuclear neutrophil leukocytes (PMNL) in dairy cows. To do so, PMNL of 6 primiparous and 6 multiparous dairy cows were used. A collection of 38 non-aureus staphylococci (NAS) and 12 Staphylococcus aureus were included. The phagocytosis and intracellular reactive oxygen species (ROS) production by blood and milk PMNL were analyzed by flow cytometry. Phagocytosis, by both blood and milk PMNL, did not differ between S. aureus and NAS as a group, although within-NAS species differences were observed. Staphylococcus chromogenes (a so-called milk-adapted NAS species) better resisted phagocytosis by blood PMNL than the so-called environmental (i.e., Staphylococcus fleurettii) and opportunistic (i.e., Staphylococcus haemolyticus) NAS species. Otherwise, S. haemolyticus was better phagocytosed by blood PMNL than S. aureus, S. fleurettii, and S. chromogenes. No influence of the origin of the isolates within the staphylococci species in the resistance to phagocytosis by blood and milk PMNL was found. Overall, both S. aureus and NAS did not inhibit intracellular ROS production in blood and milk PMNL. Non-aureus staphylococci induced fewer ROS by milk PMNL than S. aureus, which was not true for blood PMNL, although species-specific differences in the intensity of ROS production were observed. Staphylococcus chromogenes induced more blood PMNL ROS than S. fleurettii and S. haemolyticus, and as much as S. aureus. Conversely, S. chromogenes induced fewer milk PMNL ROS than S. aureus. The origin of the isolates within the staphylococci species did not affect the ROS production by blood and milk PMNL. In conclusion, our study showed differences in staphylococci species in evading phagocytosis and triggering ROS production, which may explain the ability of some staphylococci species (i.e., S. aureus and S. chromogenes) to cause persistent infection and induce inflammation

    Therapeutic anti-integrin (α4 and αL) monoclonal antibodies: two-edged swords?

    No full text
    Anti-α4 and anti-αL integrin chain monoclonal antibodies have shown a clear-cut beneficial effect in different animal models of autoimmune and inflammatory disorders as well as in human diseases, including multiple sclerosis, inflammatory bowel disease, and psoriasis. It has been widely assumed that this therapeutic effect is mainly consequence of the blockade of leucocyte adhesion to endothelium, inhibiting thus their extravasation and the inflammatory phenomenon. However, it is evident that both α4β1 (very late antigen-4) and αLβ2 (leucocyte function-associated antigen-1) integrins have additional important roles in other immune phenomena, including the formation of the immune synapse and the differentiation of T helper 1 lymphocytes. Therefore, it is very feasible that the long-term administration of blocking agents directed against these integrins to patients with inflammatory/autoimmune conditions may have undesirable or unexpected effects
    corecore