4,364 research outputs found

    Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way post-processing

    Full text link
    We derive a bound for the security of QKD with finite resources under one-way post-processing, based on a definition of security that is composable and has an operational meaning. While our proof relies on the assumption of collective attacks, unconditional security follows immediately for standard protocols like Bennett-Brassard 1984 and six-states. For single-qubit implementations of such protocols, we find that the secret key rate becomes positive when at least N\sim 10^5 signals are exchanged and processed. For any other discrete-variable protocol, unconditional security can be obtained using the exponential de Finetti theorem, but the additional overhead leads to very pessimistic estimates

    Device independent quantum key distribution secure against coherent attacks with memoryless measurement devices

    Full text link
    Device independent quantum key distribution aims to provide a higher degree of security than traditional QKD schemes by reducing the number of assumptions that need to be made about the physical devices used. The previous proof of security by Pironio et al. applies only to collective attacks where the state is identical and independent and the measurement devices operate identically for each trial in the protocol. We extend this result to a more general class of attacks where the state is arbitrary and the measurement devices have no memory. We accomplish this by a reduction of arbitrary adversary strategies to qubit strategies and a proof of security for qubit strategies based on the previous proof by Pironio et al. and techniques adapted from Renner.Comment: 13 pages. Expanded main proofs with more detail, miscellaneous edits for clarit

    Generalized Entropies

    Full text link
    We study an entropy measure for quantum systems that generalizes the von Neumann entropy as well as its classical counterpart, the Gibbs or Shannon entropy. The entropy measure is based on hypothesis testing and has an elegant formulation as a semidefinite program, a type of convex optimization. After establishing a few basic properties, we prove upper and lower bounds in terms of the smooth entropies, a family of entropy measures that is used to characterize a wide range of operational quantities. From the formulation as a semidefinite program, we also prove a result on decomposition of hypothesis tests, which leads to a chain rule for the entropy.Comment: 21 page

    Classification of Reductive Monoid Spaces Over an Arbitrary Field

    Full text link
    In this semi-expository paper we review the notion of a spherical space. In particular we present some recent results of Wedhorn on the classification of spherical spaces over arbitrary fields. As an application, we introduce and classify reductive monoid spaces over an arbitrary field.Comment: This is the final versio

    On low-sampling-rate Kramers-Moyal coefficients

    Full text link
    We analyze the impact of the sampling interval on the estimation of Kramers-Moyal coefficients. We obtain the finite-time expressions of these coefficients for several standard processes. We also analyze extreme situations such as the independence and no-fluctuation limits that constitute useful references. Our results aim at aiding the proper extraction of information in data-driven analysis.Comment: 9 pages, 4 figure

    Secure certification of mixed quantum states with application to two-party randomness generation

    Get PDF
    We investigate sampling procedures that certify that an arbitrary quantum state on nn subsystems is close to an ideal mixed state φn\varphi^{\otimes n} for a given reference state φ\varphi, up to errors on a few positions. This task makes no sense classically: it would correspond to certifying that a given bitstring was generated according to some desired probability distribution. However, in the quantum case, this is possible if one has access to a prover who can supply a purification of the mixed state. In this work, we introduce the concept of mixed-state certification, and we show that a natural sampling protocol offers secure certification in the presence of a possibly dishonest prover: if the verifier accepts then he can be almost certain that the state in question has been correctly prepared, up to a small number of errors. We then apply this result to two-party quantum coin-tossing. Given that strong coin tossing is impossible, it is natural to ask "how close can we get". This question has been well studied and is nowadays well understood from the perspective of the bias of individual coin tosses. We approach and answer this question from a different---and somewhat orthogonal---perspective, where we do not look at individual coin tosses but at the global entropy instead. We show how two distrusting parties can produce a common high-entropy source, where the entropy is an arbitrarily small fraction below the maximum (except with negligible probability)

    Tight Finite-Key Analysis for Quantum Cryptography

    Get PDF
    Despite enormous progress both in theoretical and experimental quantum cryptography, the security of most current implementations of quantum key distribution is still not established rigorously. One of the main problems is that the security of the final key is highly dependent on the number, M, of signals exchanged between the legitimate parties. While, in any practical implementation, M is limited by the available resources, existing security proofs are often only valid asymptotically for unrealistically large values of M. Here, we demonstrate that this gap between theory and practice can be overcome using a recently developed proof technique based on the uncertainty relation for smooth entropies. Specifically, we consider a family of Bennett-Brassard 1984 quantum key distribution protocols and show that security against general attacks can be guaranteed already for moderate values of M.Comment: 11 pages, 2 figure

    Tunneling Study of the Charge-Ordering Gap on the Surface of La0.350_{0.350}Pr0.275_{0.275}Ca0.375_{0.375}MnO3_3 Thin Films

    Get PDF
    Variable temperature scanning tunneling microscopy/spectroscopy studies on (110) oriented epitaxial thin films of La0.350_{0.350}Pr0.275_{0.275}Ca0.375_{0.375}MnO3_3 are reported in the temperature range of 77 to 340 K. The films, grown on lattice matched NdGaO3_3 substrates, show a hysteretic metal-insulator transition in resistivity at 170 K. The topographic STM images show step-terrace morphology while the conductance images display a nearly homogeneous surface. The normalized conductance spectra at low temperatures (T<<150 K) show an energy gap of 0.5 eV while for T\geq180 K a gap of 0.16 eV is found from the activated behavior of the zero bias conductance. The presence of energy gap and the absence of phase separation on the surface over more than 2 μ\mum×\times2 μ\mum area contradicts the metallic behavior seen in resistivity measurements at low temperatures. We discuss the measured energy gap in terms of the stabilization of the insulating CO phase at the film surface.Comment: 5 pages, 5 figures To appear in Phys. Rev.

    Instability of a Landau Fermi liquid as the Mott insulator is approached

    Full text link
    We examine a two-dimensional Fermi liquid with a Fermi surface which touches the Umklapp surface first at the 4 points (±π/2,±π/2)(\pm \pi/2, \pm \pi/2) as the electron density is increased. Umklapp processes at the 4 patches near (±π/2,±π/2)(\pm \pi/2, \pm\pi/2) lead the renormalization group equations to scale to strong coupling resembling the behavior of a 2-leg ladder at half-filling. The incompressible character of the fixed point causes a breakdown of Landau theory at these patches. A further increase in density spreads the incompressible regions so that the open Fermi surface shrinks to 4 disconnected segments. This non-Landau state, in which parts of the Fermi surface are truncated to form an insulating spin liquid, has many features in common with phenomenological models recently proposed for the cuprate superconductors.Comment: Minor changes. LaTeX2e, 12 pages, 5 figures. J. Phys. CM 10 (1998) L38
    corecore