5 research outputs found

    Positioning variation modeling for aircraft panels assembly based on elastic deformation theory

    Get PDF
    Dimensional variation in aircraft panel assembly is one of the most critical issues that affects the aerodynamic performance of aircraft, due to elastic deformation of parts during the positioning and clamping process. This paper proposes an assembly deformation prediction model and a variation propagation model to predict the assembly variation of aircraft panels, and derives consecutive 3-D deformation expressions which explicitly describe the nonlinear behavior of physical interaction occurring in compliant components assembly. An assembly deformation prediction model is derived from equations of statics of elastic beam to calculate the elastic deformation of panel component resulted from positioning error and clamping force. A variation propagation model is used to describe the relationship between local variations and overall assembly variations. Assembly variations of aircraft panels due to positioning error are obtained by solving differential equations of statics and operating spatial transformations of the coordinate. The calculated results show a good prediction of variation in the experiment. The proposed method provides a better understanding of the panel assembly process and creates an analytical foundation for further work on variation control and tolerance optimization

    A Review on Variation Modeling of Aircraft Assembly

    No full text
    Abstract: Purpose; The purpose of this paper is to provide a state-of-art review on variation modeling and propagation in aircraft assembly based on process-oriented strategy. And the main focus is on classifying and delineating different approaches, methods, and techniques with critical appraisals of their theories, applications, and limitations, based on which future research directions and corresponding methodologies are proposed. Design/methodology/approach; To facilitate understanding of the background, this paper starts with a brief description of aircraft assembly. Afterwards, this paper presents a comprehensive review of practical solutions in aircraft variation modeling. Their characteristics are summarized, which serves as a basis for the discussion of deviation control strategies. Thereafter, the possible trends are discussed to facilitate assembly quality control in future research

    Modified Fourier–Galerkin Solution for Aerospace Skin-Stiffener Panels Subjected to Interface Force and Mixed Boundary Conditions

    No full text
    Aeronautical stiffened panels composed of thin shells and beams are prone to deformation or buckling due to the combined loading, functional boundary conditions and interface forces between joined parts in the assembly processes. In this paper, a mechanical prediction model of the multi-component panel is presented to investigate the deformation propagation, which has a significant effect on the fatigue life of built-up structures. Governing equations of Kirchhoff–Love shell are established, of which displacement expressions are transformed into Fourier series expansions of several introduced potential functions by applying the Galerkin approach. This paper presents an intermediate quantity, concentrated force at the joining interface, to describe mechanical interactions between the coupled components. Based on the Euler–Bernoulli beam theory, unknown intermediate quantity is calculated by solving a 3D stringer deformation equation with static boundary conditions specified on joining points. Compared with the finite element simulation and integrated model, the proposed method can substantially reduce grid number without jeopardizing the prediction accuracy. Practical experiment of the aircraft panel assembly is also performed to obtain the measured data. Maximum deviation between the experimental and predicted clearance values is 0.193 mm, which is enough to meet the requirement for predicting dimensional variations of the aircraft panel assembly

    A Novel Resolution Scheme of Time-Energy Optimal Trajectory for Precise Acceleration Controlled Industrial Robot Using Neural Networks

    No full text
    The surging popularity of adopting industrial robots in smart manufacturing has led to an increasing trend in the simultaneous improvement of the energy costs and operational efficiency of motion trajectory. Motivated by this, multi-objective trajectory planning subject to kinematic and dynamic constraints at multiple levels has been considered as a promising paradigm to achieve the improvement. However, most existing model-based multi-objective optimization algorithms tend to come out with infeasible solutions, which results in non-zero initial and final acceleration. Popular commercial software toolkits applied to solve multi-objective optimization problems in actual situations are mostly based on the fussy conversion of the original objective and constraints into strict convex functions or linear functions, which could induce a failure of duality and obtain results exceeding limits. To address the problem, this paper proposes a time-energy optimization model in a phase plane based on the Riemann approximation method and a solution scheme using an iterative learning algorithm with neural networks. We present forward-substitution interpolation functions as basic functions to calculate indirect kinematic and dynamic expressions introduced in a discrete optimization model with coupled constraints. Moreover, we develop a solution scheme of the complex trajectory optimization problem based on artificial neural networks to generate candidate solutions for each iteration without any conversion into a strict convex function, until minimum optimization objectives are achieved. Experiments were carried out to verify the effectiveness of the proposed optimization solution scheme by comparing it with state-of-the-art trajectory optimization methods using Yalmip software. The proposed method was observed to improve the acceleration control performance of the solved robot trajectory by reducing accelerations exceeding values of joints 2, 3 and 5 by 3.277 rad/s2, 26.674 rad/s2, and 7.620 rad/s2, respectively

    A Novel Resolution Scheme of Time-Energy Optimal Trajectory for Precise Acceleration Controlled Industrial Robot Using Neural Networks

    No full text
    The surging popularity of adopting industrial robots in smart manufacturing has led to an increasing trend in the simultaneous improvement of the energy costs and operational efficiency of motion trajectory. Motivated by this, multi-objective trajectory planning subject to kinematic and dynamic constraints at multiple levels has been considered as a promising paradigm to achieve the improvement. However, most existing model-based multi-objective optimization algorithms tend to come out with infeasible solutions, which results in non-zero initial and final acceleration. Popular commercial software toolkits applied to solve multi-objective optimization problems in actual situations are mostly based on the fussy conversion of the original objective and constraints into strict convex functions or linear functions, which could induce a failure of duality and obtain results exceeding limits. To address the problem, this paper proposes a time-energy optimization model in a phase plane based on the Riemann approximation method and a solution scheme using an iterative learning algorithm with neural networks. We present forward-substitution interpolation functions as basic functions to calculate indirect kinematic and dynamic expressions introduced in a discrete optimization model with coupled constraints. Moreover, we develop a solution scheme of the complex trajectory optimization problem based on artificial neural networks to generate candidate solutions for each iteration without any conversion into a strict convex function, until minimum optimization objectives are achieved. Experiments were carried out to verify the effectiveness of the proposed optimization solution scheme by comparing it with state-of-the-art trajectory optimization methods using Yalmip software. The proposed method was observed to improve the acceleration control performance of the solved robot trajectory by reducing accelerations exceeding values of joints 2, 3 and 5 by 3.277 rad/s2, 26.674 rad/s2, and 7.620 rad/s2, respectively
    corecore