7 research outputs found

    Tissue culture of gerunggang (Cratoxylum arborescens (Vahl) Blume): multipurpose native species of Indonesian peatland

    No full text
    AbstractGerunggang (Cratoxylum arborescens (Vahl) Blume) is a tree native to Indonesian peatlands that has great potential as an alternative fiber-producing species for the pulp and paper industry because it is adaptable and does not have the potential to disrupt local ecosystems. The species also contains important anti-cancer compounds for the pharmaceutical industry. These industries require large quantities of raw materials to meet their needs, which cannot be met by the supply of conventional plant seedlings. Tissue culture is one of the propagation biotechnologies that can be used as an alternative to provide more efficient germplasm. In this study, we developed a protocol for gerunggang propagation using tissue culture technique. The results showed that the combination of 1 mg/l 6-benzylamino purine (BAP) and 0.5 mg/l naphthalene acetic acid (NAA) in Murashige & Skoog media provided the fastest bud break time (2 weeks before the first subculture), with the highest shoot initiation (3.0 ± 0.2 cm), and after 4 weeks of incubation, the highest auxiliary shoot elongation (7.4 ± 0.1 cm). The significant effect of this hormone concentration also increases the nodule multiplication coefficient (NMC), which is 7.5. In vitro root response on the same propagation medium showed good growth with an average root length of 4.8 ± 0.2 cm. Acclimatization of plantlets was successful under ex vitro conditions and resulted in good growth after 2 and 3 months in the greenhouse. The advantage of applying the tissue culture method to gerunggang is that it can produce about seven times more seedlings from one explant in about 4 weeks. These results will be very useful for further research in the field and require a more intensive and comprehensive study

    In Vitro Multiplication of Lophostemon suaveolens (Sol.ex Gaertn.) Peter G.Wilson & J.T. Waterh): Peatland Tree Species for Rehabilitation

    No full text
    Peatlands in Indonesia are one of the world’s largest carbon sinks, helping to regulate greenhouse gas emissions and global climate change. Lophostemon suaveolens is a relatively unexplored plant found in Papua’s endemic peat ecosystem that grows well in wet areas with low fertility. It is geographically dispersed and has the potential for peatland rehabilitation. Seed is one of materials for the reproduction of L. suaveolens. However, the difficulty in seed collection and the limitation in seed production has become a current problem for its cultivation. Seed multiplication by using an in vitro method would be one of the mechanisms to overcome the problem. We present an efficient and reproducible protocol for in vitro multiplication of plantlets using nodal segments and shoot apices collected from plantlets. After 3 months of the culture initiation stage, the elongated axillary shoots were separated from the clumps and further multiplied using Murashige and Skoog (MS) media supplemented with (1) BAP (0.5 mL/L) as single PGR, (2) NAA (0.1 mL/L) as a single PGR, and (3) a combination of two types of PGR BAP (0.5 mL/L) and NAA (0.1 mL/L). Up to an incubation period of 6 months, the efficiency of leaf axillary shoot propagation was determined by counting the number of nodule multiplication coefficient (NMC), shoot length, root length, and number of leaves (six consecutive subcultures). The higher the NMC, the higher the plantlets obtained, increasing shoot regeneration from nodules physiologically increasing evapotranspiration in vitro. The highest of NMC (8.4) was observed in MS medium with a combination of 0.5 mL/L BAP and 0.1 mL/L NAA (double PGRs), with the longest shoots (5.91 cm), the longest root length (8.83 cm), and the most leaves (32). When a combination of BAP and NAA were used simultaneously, the plantlets during acclimatization were the highest survived. It was concluded that MS in combination with 0.5 mL/L BAP and 0.1 mL/L NAA is the most appropriate protocol for the success of in vitro multiplication of L. suaveolens. This is the first report of L. suaveolens in vitro multiplication, and the protocol could be used to propagate this peatland species on a large scale. The authors acknowledge the limitations of the experimental work and recommend further work to increase the sample size and complete the field-testing phase to help verify the initial findings presented in this paper

    In Vitro Multiplication of <i>Lophostemon suaveolens</i> (Sol.ex Gaertn.) Peter G.Wilson & J.T. Waterh): Peatland Tree Species for Rehabilitation

    No full text
    Peatlands in Indonesia are one of the world’s largest carbon sinks, helping to regulate greenhouse gas emissions and global climate change. Lophostemon suaveolens is a relatively unexplored plant found in Papua’s endemic peat ecosystem that grows well in wet areas with low fertility. It is geographically dispersed and has the potential for peatland rehabilitation. Seed is one of materials for the reproduction of L. suaveolens. However, the difficulty in seed collection and the limitation in seed production has become a current problem for its cultivation. Seed multiplication by using an in vitro method would be one of the mechanisms to overcome the problem. We present an efficient and reproducible protocol for in vitro multiplication of plantlets using nodal segments and shoot apices collected from plantlets. After 3 months of the culture initiation stage, the elongated axillary shoots were separated from the clumps and further multiplied using Murashige and Skoog (MS) media supplemented with (1) BAP (0.5 mL/L) as single PGR, (2) NAA (0.1 mL/L) as a single PGR, and (3) a combination of two types of PGR BAP (0.5 mL/L) and NAA (0.1 mL/L). Up to an incubation period of 6 months, the efficiency of leaf axillary shoot propagation was determined by counting the number of nodule multiplication coefficient (NMC), shoot length, root length, and number of leaves (six consecutive subcultures). The higher the NMC, the higher the plantlets obtained, increasing shoot regeneration from nodules physiologically increasing evapotranspiration in vitro. The highest of NMC (8.4) was observed in MS medium with a combination of 0.5 mL/L BAP and 0.1 mL/L NAA (double PGRs), with the longest shoots (5.91 cm), the longest root length (8.83 cm), and the most leaves (32). When a combination of BAP and NAA were used simultaneously, the plantlets during acclimatization were the highest survived. It was concluded that MS in combination with 0.5 mL/L BAP and 0.1 mL/L NAA is the most appropriate protocol for the success of in vitro multiplication of L. suaveolens. This is the first report of L. suaveolens in vitro multiplication, and the protocol could be used to propagate this peatland species on a large scale. The authors acknowledge the limitations of the experimental work and recommend further work to increase the sample size and complete the field-testing phase to help verify the initial findings presented in this paper

    Restoration of Degraded Tropical Peatland in Indonesia: A Review

    No full text
    Tropical peatlands are fragile ecosystems with an important role in conserving biodiversity, water quality and availability, preventing floods, soil intrusion, erosion and sedimentation, and providing a livelihood for people. However, due to illegal logging, fire and conversion into other land use, the peatlands in Indonesia are under serious threat. Efforts to restore Indonesia’s tropical peatlands have been accelerated by the establishment of the Peatland Restoration Agency in early 2016. The restoration action policy includes the rewetting, revegetation and revitalisation of local livelihood (known as the 3Rs). This paper summarises the regulatory, institutional and planning aspects of peatland restoration, in addition to the implementation of the 3Rs in Indonesia, including failures, success stories, and the criteria and indicators for the success of peatland restoration

    Tropical Forest Landscape Restoration in Indonesia: A Review

    No full text
    Indonesia has the second-largest biodiversity of any country in the world. Deforestation and forest degradation have caused a range of environmental issues, including habitat degradation and loss of biodiversity, deterioration of water quality and quantity, air pollution, and increased greenhouse gas emissions that contribute to climate change. Forest restoration at the landscape level has been conducted to balance ecological integrity and human well-being. Forest restoration efforts are also aimed at reducing CO2 emissions and are closely related to Indonesia’s Nationally Determined Contribution (NDC) from the forestry sector. The purpose of this paper is to examine the regulatory, institutional, and policy aspects of forest restoration in Indonesia, as well as the implementation of forest restoration activities in the country. The article was written using a synoptic review approach to Forest Landscape Restoration (FLR)-related articles and national experiences. Failures, success stories, and criteria and indicators for forest restoration success are all discussed. We also discuss the latest silvicultural techniques for the success of the forest restoration program. Restoration governance in Indonesia has focused on the wetland ecosystem such as peatlands and mangroves, but due to the severely degraded condition of many forests, the government has by necessity opted for active restoration involving the planting and establishment of livelihood options. The government has adapted its restoration approach from the early focus on ecological restoration to more forest landscape restoration, which recognizes that involving the local community in restoration activities is critical for the success of forest restoration

    A Chronicle of Indonesia’s Forest Management: A Long Step towards Environmental Sustainability and Community Welfare

    No full text
    Indonesia is the largest archipelagic country in the world, with 17,000 islands of varying sizes and elevations, from lowlands to very high mountains, stretching more than 5000 km eastward from Sabang in Aceh to Merauke in Papua. Although occupying only 1.3% of the world’s land area, Indonesia possesses the third-largest rainforest and the second-highest level of biodiversity, with very high species diversity and endemism. However, during the last two decades, Indonesia has been known as a country with a high level of deforestation, a producer of smoke from burning forests and land, and a producer of carbon emissions. The aim of this paper is to review the environmental history and the long process of Indonesian forest management towards achieving environmental sustainability and community welfare. To do this, we analyze the milestones of Indonesian forest management history, present and future challenges, and provide strategic recommendations toward a viable Sustainable Forest Management (SFM) system. Our review showed that the history of forestry management in Indonesia has evolved through a long process, especially related to contestation over the control of natural resources and supporting policies and regulations. During the process, many efforts have been applied to reduce the deforestation rate, such as a moratorium on permitting primary natural forest and peat land, land rehabilitation and soil conservation, environmental protection, and other significant regulations. Therefore, these efforts should be maintained and improved continuously in the future due to their significant positive impacts on a variety of forest areas toward the achievement of viable SFM. Finally, we conclude that the Indonesian government has struggled to formulate sustainable forest management policies that balance economic, ecological, and social needs, among others, through developing and implementing social forestry instruments, developing and implementing human resource capacity, increasing community literacy, strengthening forest governance by eliminating ambiguity and overlapping regulations, simplification of bureaucracy, revitalization of traditional wisdom, and fair law enforcement
    corecore