50 research outputs found

    Structural prediction of Fe-Mg-O compounds at Super-Earth's pressures

    Full text link
    Terrestrial exoplanets are of great interest for being simultaneously similar to and different from Earth. Their compositions are likely comparable to those of solar-terrestrial objects, but their internal pressures and temperatures can vary significantly with their masses/sizes. The most abundant non-volatile elements are O, Mg, Si, Fe, Al, and Ca, and there has been much recent progress in understanding the nature of magnesium silicates up to and beyond ~3 TPa. However, a critical element, Fe, has yet to be systematically included in materials discovery studies of potential terrestrial planet-forming phases at ultra-high pressures. Here, using the adaptive genetic algorithm (AGA) crystal structure prediction method, we predict several unreported stable crystalline phases in the binary Fe-Mg and ternary Fe-Mg-O systems up to pressures of 3 TPa. The analysis of the local packing motifs of the low-enthalpy Fe-Mg-O phases reveals that the Fe-Mg-O system favors a BCC motif under ultra-high pressures regardless of chemical composition. Besides, oxygen enrichment is conducive to lowering the enthalpies of the Fe-Mg-O phases. Our results extend the current knowledge of structural information of the Fe-Mg-O system to exoplanet pressures

    Physiological basis for isoxadifen-ethyl induction of nicosulfuron detoxification in maize hybrids.

    No full text
    Isoxadifen-ethyl can effectively alleviate nicosulfuron injury in the maize. However, the effects of safener isoxadifen-ethyl on detoxifying enzymes in maize is unknown. The individual and combined effects of the sulfonylurea herbicide nicosulfuron and the safener isoxadifen-ethyl on the growth and selected physiological processes of maize were evaluated. Bioassays showed that the EC50 values of nicosulfuron and nicosulfuron plus isoxadifen-ethyl for maize cultivar Zhengdan958 were 18.87 and 249.28 mg kg-1, respectively, and were 24.8 and 275.51 mg kg-1, respectively, for Zhenghuangnuo No. 2 cultivar. Evaluations of the target enzyme of acetolactate synthase showed that the I50 values of nicosulfuron and nicosulfuron plus isoxadifen-ethyl for the ALS of Zhengdan958 were 15.46 and 28.56 μmol L-1, respectively, and were 0.57 and 2.17 μmol L-1, respectively, for the acetolactate synthase of Zhenghuangnuo No. 2. The safener isoxadifen-ethyl significantly enhanced tolerance of maize to nicosulfuron. The enhanced tolerance of maize to nicosulfuron in the presence of the safener, coupled with the enhanced injury observed in the presence of piperonyl butoxide, 1-aminobenzotriazole, and malathion, suggested cytochrome P450 monooxygenases may be involved in metabolism of nicosulfuron. We proposed that isoxadifen-ethyl increases plant metabolism of nicosulfuron through non-P450-catalyzed routes or through P450 monooxygenases not inhibited by piperonyl butoxide, 1-aminobenzotriazole, and malathion. Isoxadifen-ethyl, at a rate of 33 mg kg-1, completely reversed the effects of all doses (37.5-300 mg kg-1) of nicosulfuron on both of the maize cultivars. When the two compounds were given simultaneously, isoxadifen-ethyl enhanced activity of glutathione S-transferases (GSTs) and acetolactate synthase activity in maize. The free acid 4,5-dihydro-5,5-diphenyl-1,2-oxazole-3-carboxylic was equally effective at inducing GSTs as the parent ester and appeared to be the active safener. GST induction in the maize Zhenghuangnuo No. 2 was faster than in Zhengdan 958

    Magmatic activity and hydrocarbon potential revealed by Paleozoic collapse structures in the Hangjinqi area, northern Ordos Basin, China

    No full text
    Collapsed reflections of lower Ordovician carbonates and upper Carboniferous-lower Permian coal-bearing strata occur below the middle Permian lower Shihezi Formation in the Hangjinqi area, northern Ordos Basin. This study takes advantage of three-dimensional seismic data, logging data, core data and well-testing data to investigate the genesis of the collapsed reflections and their implications for hydrocarbon potential. These collapse structures have a subcircular appearance in map view. The columnar reflections in the basement and the volcanic tuff in the lower Shihezi Formation around collapse structures indicate that the formation of these structures are related to magmatic activity. Most of the collapse structures terminate upward in the H1 member of the lower Shihezi Formation, which explains its greater thickness and supports the hypothesis that magmatic activity occurred during the depositional stage of the lower Shihezi Formation in the early middle Permian. The collapse structures can increase the thickness and space of the reservoirs, and the collapse of magma conduit can also increase the thickness of the regional sedimentary cap rock above the collapse structures and improve the sealing capacity of the cap rock. These results provide insights into the magmatic activity and hydrocarbon potential of Paleozoic rocks in the Ordos Basin.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Effects of bensulfuron-methyl residue on photosynthesis and chlorophyll fluorescence in leaves of cucumber seedlings.

    No full text
    A potted soil experiment was conducted to investigate the effects of bensulfuron-methyl (BSM) residue on the growth and photosynthesis of seedlings of a local cucumber variety (Xia Feng No.1). When the residue of bensulfuron-methyl in soil exceeded 50μg kg-1, it significantly inhibited the growth of cucumber, chlorophyll content and photosynthetic capacity of cucumber. BSM treatment caused significant decreases in the biomass, chlorophyll content, net photosynthesis rate, stomatal conductance, and transpiration rate, photosystem II (PSII) maximum quantum yield, actual quantum yield, photochemical quenching coefficient, and electron transport rate in cucumber seedlings, but increased the minimal fluorescence yield and dark respiration rate. Moreover, comparisons of the patterns of absorbed light energy partitioning revealed that the fractions of excess and thermally dissipated energy increased with rising concentrations of the BSM residue, but the fraction of PSII photochemistry declined. The BSM residues caused reversible destruction in the PSII reaction centers and decreased the proportion of available excitation energy used in PSII photochemistry. The results suggested that rice or wheat fields sprayed with BSM will not be suitable for planting cucumbers in succession or rotation

    Candidate Genes Involved in Tolerance to Fenoxaprop-P-Ethyl in Rice Induced by Isoxadifen-Ethyl Hydrolysate

    No full text
    The metabolic resistance of plants to herbicides is similar to the herbicide metabolism process accelerated by safeners. The tolerance to fenoxaprop-P-ethyl (FE) is distinct among different varieties of rice in which phytotoxicity forms easily, resulting in the restricted use of FE in paddy. Safener effectively resolves this issue. This study showed that rice 9311 and Meixiangzhan No. 2 (MXZ) had different tolerance mechanisms to FE. Isoxadifen-ethyl hydrolysate (IH) alleviated FE the inhibition of rice growth. Transcriptome sequencing revealed numerous differentially expressed genes (DEGs) between the two varieties. A total of 31 metabolic enzyme genes related to herbicide detoxification were screened by analyzing the DEGs in different rice varieties or treatments. The results of the quantitative reverse transcription polymerase chain reaction indicated that 12 genes were potential metabolic genes resistant to FE in rice. Additionally, the enhanced expression of GSTU6, DIMBOA UGT BX8, and ABCG39 was confirmed to be induced by safener. Taken together, our results demonstrated that the induced expression of these three genes might be crucial for resistance to herbicide phytotoxicity in crops. These results may help us to understand herbicide metabolism in crops and to develop novel strategies for the safe use of herbicides

    Changes in GSH content in maize Zhengdan 958 exposed to nicosulfuron alone or in combination with isoxadifen-ethyl after treatment.

    No full text
    <p>The different lowercase letters are significantly different from each other (P < 0.05) among different concentrations of nicosulfuron according to Duncan’s test. NS: nicosulfuron; IE: isoxadifen-ethyl.</p

    Changes in GST activity in maize Zhengdan 958 exposed to nicosulfuron alone or in combination with isoxadifen-ethyl after treatment.

    No full text
    <p>The different lowercase letters are significantly different from each other (P < 0.05) among different concentrations of nicosulfuron, according to Duncan’s test. NS: nicosulfuron; IE: isoxadifen-ethyl.</p

    Stabilizing the crystal structures of NaFePO4 with Li substitutions

    Get PDF
    Due to the high cost and insufficient resources of lithium, alternative sodium-ion batteries have been widely investigated for large-scale applications. NaFePO4 has the highest theoretical capacity of 154 mA h g−1 among the iron-based phosphates, which makes it an attractive cathode material for Na-ion batteries. Experimentally, LiFePO4 has been highly successful as a cathode material in Li-ion batteries because its olivine crystal structure provides a stable framework during battery cycling. In NaFePO4, maricite replaces olivine as the most stable phase. However, the maricite phase is experimentally found to be electrochemically inactive under normal battery operating voltages (0–4.5 V). We found that partial substitutions of Na with Li stabilize the olivine structure and may be a way to improve the performance of NaFePO4 cathodes. Using the previously developed structural LiFePO4 database, we examined the low-energy crystal structures in the system when we replace Li with Na. The known maricite and olivine NaFePO4 phases are reconfirmed and an unreported phase with energy between them is identified by our calculations. Besides, the Li-doped olivine type compound LixNa1−xFePO4 with mixed alkali ions retains better energetic stability compared with the other two types of structures of the same composition, as long as the proportion of Li exceeds 0.25. The thermodynamic stability of o-type LixNa1−xFePO4 can be further improved at finite temperatures. The primary limitation of the calculations is that we mainly focus on the zero-temperature condition; however, the relative stability of the structures may vary depending on the ambient temperature
    corecore