79 research outputs found

    Food Recognition and Detection with Minimum Supervision

    Get PDF
    Detecting multiple food items in one image is a challenge task. We propose a novel method which detects food items and their locations in the image with minimal supervision. In training, we generate candidate object regions for each image and extract their CNN features. Then we perform region mining to select discriminative regions for each class by submodular optimization. With these mined regions, we train a binary SVM classifier for each class and further refine these classifiers with hard negatives mining. In testing, a score is computed for each proposed region and we select the regions using non-maximum suppression and output the locations and predicted class names. Our experiments show very promising results with an average precision of 83.78% on test dataset. Our food detection method could be easily extended to a larger dataset as no ground-truth bounding boxes is needed during training

    Identification of discharge regimes of cyclone dipleg-trickle valve system based on pressure fluctuation profiles

    Get PDF
    An experiment was conducted on the Φ150mm×5000mmcyclone dipleg-trickle valve setup, which was focused on analyzing the discharge characteristics of trickle valve of cyclone dipleg by means of the dynamic pressure measurement. The effects of two operating parameters, negative pressure drop (0~11kPa) and solids flux rate (0~50 kg/m2.s), on the discharge patterns were investigated. The experimental results show that there are two kinds of discharge patterns in the trickle valve. One is continuous trickling discharge at low negative pressure drop and high solids flux rate, which is characterized by valve plate opening continuously, and the measured pressure with high frequency and low amplitude. The other is intermittent periodic dumping discharge at high negative pressure drop and low solids flux rate, which has the properties of valve plate opening interval, and the measured pressure with low frequency and high amplitude. The two discharge patterns could transform each other as varying the negative pressure drop or solids flux rate. The discharge regime map was proposed based on the experimental data, which is related to the negative. Please click Additional Files below to see the full abstract

    Genome-wide identification of the TGA genes in common bean (Phaseolus vulgaris) and revealing their functions in response to Fusarium oxysporum f. sp. phaseoli infection

    Get PDF
    Fusarium wilt, which affects common bean all across the world, is caused by Fusarium oxysporum f. sp. Phaseoli (Fop). It is necessary to have functional genes in response to Fop infection because they might be used to manage disease. As a crucial regulator, TGA-binding transcription factor (TGA) is engaged in the defense mechanism of plants against pathogens. The role of TGA regulators in common bean in response to Fop infection, however, has not been documented. Hence, we performed genome-wide identified and characterized eight TGA genes in common bean. In this study, eight PvTGA genes were distributed on six chromosomes and classified into four subgroups. The PvTGA genes have the same conserved bZIP and DOG1 domains, but there are specific sequence structures in different PvTGAs. Phylogenetic and synteny analysis explained that PvTGA gene has a close genetic relationship with legume TGAs and that PvTGA03 and PvTGA05 may play an important role in evolution. Transcriptome data explained that expression levels of PvTGA genes showed diversity in different tissues. After Fop inoculation, the expression levels of PvTGA03 and PvTGA07 were significantly different between resistant and susceptible genotypes. Under SA treatment, the expression levels of PvTGA03, PvTGA04, PvTGA06, PvTGA07 and PvTGA08 were significantly different. These results imply that PvTGA03 and PvTGA07 play key roles in SA-mediated resistance to Fusarium wilt. Together, these findings advance knowledge of the PvTGA gene family in common bean and will help future studies aimed at reducing Fusarium wilt

    Constant real-space fractal dimensionality and structure evolution in Ti62Cu38 metallic glass under high pressure

    Get PDF
    The structure of binary Ti62Cu38 metallic glass is investigated under pressures up to 33.8 GPa using the pair distribution function analysis based on high-energy x-ray scattering and reverse Monte Carlo (RMC) simulations. At a global scale, its relative volume shows a continuously smooth curve as a function of pressure. The isothermal bulk modulus of Ti62Cu38 metallic glass is estimated as B0=132(3)GPa with B0′=5.8(0.4). At a local scale, the atomic packing structure under compression conditions, which is extracted from RMC simulations, shows that the topological short-range order is dominated by the deformed icosahedron polyhedra and basically maintains stable. From the relationship between the relative volume and changing ratio of the atomic separation distances, the real-space fractal dimensionality of this metallic glass is determined as about 2.5 for all of the first four peaks. This experimental result reveals the consistent nature of the fractal feature on the degree of self-similarity in this sample within the entire experimental pressure range

    Marine hydrographic spatial-variability and its cause at the northern margin of the Amery Ice Shelf

    Get PDF
    Conductivity, temperature and depth(CTD) data collected along a zonal hydrographic section from the northern margin of the Amery Ice Shelf on 25–27 February 2008 by the 24th Chinese National Antarctic Research Expedition (CHINARE) cruise in the 2007/2008 austral summer are analyzed to study thermohaline structures. Analysis reveals warm subsurface water in a limited area around the east end of the northern margin, where the temperature, salinity and density have east-west gradients in the surface layer of the hydrographic section. The localization of the warm subsurface water and the causes of the CTD gradients in the surface layer are discussed. In addition, the results from these CTD data analyses are compared with those from the 22nd CHINARE cruise in the 2005/2006 austral summer. This comparison revealed that the thermoclines and haloclines had deepened and their strengths weakened in the 2007/2008 austral summer. The difference between the two data sets and the cause for it can be reasonably explained and attributed to the change in ocean-ice-atmosphere interactions at the northern margin of the Amery Ice Shelf

    Genome-wide analysis reveals regulatory mechanisms and expression patterns of TGA genes in peanut under abiotic stress and hormone treatments

    Get PDF
    IntroductionThe TGA transcription factors, plays a crucial role in regulating gene expression. In cultivated peanut (Arachis hypogaea), which faces abiotic stress challenges, understanding the role of TGAs is important.MethodsIn this study, we conducted a comprehensive in analysis of the TGA gene family in peanut to elucidate their regulatory mechanisms and expression patterns under abiotic stress and hormone treatments. Furthermore, functional studies on the representative AhTGA gene in peanut cultivars were conducted using transgenic Arabidopsis and soybean hair roots.ResultsThe genome-wide analysis revealed that a total of 20 AhTGA genes were identified and classified into five subfamilies. Collinearity analysis revealed that AhTGA genes lack tandem duplication, and their amplification in the cultivated peanut genome primarily relies on the whole-genome duplication of the diploid wild peanut to form tetraploid cultivated peanut, as well as segment duplication between the A and B subgenomes. Promoter and Protein-protein interaction analysis identified a wide range of cis-acting elements and potential interacting proteins associated with growth and development, hormones, and stress responses. Expression patterns of AhTGA genes in different tissues, under abiotic stress conditions for low temperature and drought, and in response to hormonal stimuli revealed that seven AhTGA genes from groups I (AhTGA04, AhTGA14 and AhTGA20) and II (AhTGA07, AhTGA11, AhTGA16 and AhTGA18) are involved in the response to abiotic stress and hormonal stimuli. The hormone treatment results indicate that these AhTGA genes primarily respond to the regulation of jasmonic acid and salicylic acid. Overexpressing AhTGA11 in Arabidopsis enhances resistance to cold and drought stress by increasing antioxidant activities and altering endogenous hormone levels, particularly ABA, SA and JA.DiscussionThe AhTGA genes plays a crucial role in hormone regulation and stress response during peanut growth and development. The findings provide insights into peanut's abiotic stress tolerance mechanisms and pave the way for future functional studies

    Single-cell RNA-seq reveals T cell exhaustion and immune response landscape in osteosarcoma

    Get PDF
    BackgroundT cell exhaustion in the tumor microenvironment has been demonstrated as a substantial contributor to tumor immunosuppression and progression. However, the correlation between T cell exhaustion and osteosarcoma (OS) remains unclear.MethodsIn our present study, single-cell RNA-seq data for OS from the GEO database was analysed to identify CD8+ T cells and discern CD8+ T cell subsets objectively. Subgroup differentiation trajectory was then used to pinpoint genes altered in response to T cell exhaustion. Subsequently, six machine learning algorithms were applied to develop a prognostic model linked with T cell exhaustion. This model was subsequently validated in the TARGETs and Meta cohorts. Finally, we examined disparities in immune cell infiltration, immune checkpoints, immune-related pathways, and the efficacy of immunotherapy between high and low TEX score groups.ResultsThe findings unveiled differential exhaustion in CD8+ T cells within the OS microenvironment. Three genes related to T cell exhaustion (RAD23A, SAC3D1, PSIP1) were identified and employed to formulate a T cell exhaustion model. This model exhibited robust predictive capabilities for OS prognosis, with patients in the low TEX score group demonstrating a more favorable prognosis, increased immune cell infiltration, and heightened responsiveness to treatment compared to those in the high TEX score group.ConclusionIn summary, our research elucidates the role of T cell exhaustion in the immunotherapy and progression of OS, the prognostic model constructed based on T cell exhaustion-related genes holds promise as a potential method for prognostication in the management and treatment of OS patients

    Diverse associations between pancreatic intra-, inter-lobular fat and the development of type 2 diabetes in overweight or obese patients

    Get PDF
    Pancreatic fat is associated with obesity and type 2 diabetes mellitus (T2DM); however, the relationship between different types of pancreatic fat and diabetes status remains unclear. Therefore, we aimed to determine the potential of different types of pancreatic fat accumulation as a risk factor for T2DM in overweight or obese patients. In total, 104 overweight or obese patients were recruited from January 2020 to December 2022. The patients were divided into three groups: normal glucose tolerance (NGT), impaired fasting glucose or glucose tolerance (IFG/IGT), and T2DM. mDixon magnetic resonance imaging (MRI) was used to detect pancreatic fat in all three groups of patients. The pancreatic head fat (PHF), body fat (PBF), and tail fat (PTF) in the IFG/IGT group were 21, 20, and 31% more than those in the NGT group, respectively. PHF, PBF, and PTF were positively associated with glucose metabolic dysfunction markers in the NGT group, and inter-lobular fat volume (IFV) was positively associated with these markers in the IFG/IGT group. The areas under the receiver operating characteristic curves for PHF, PBF, and PTF (used to evaluate their diagnostic potential for glucose metabolic dysfunction) were 0.73, 0.73, and 0.78, respectively, while those for total pancreatic volume (TPV), pancreatic parenchymal volume, IFV, and IFV/TPV were 0.67, 0.67, 0.66, and 0.66, respectively. These results indicate that intra-lobular pancreatic fat, including PHF, PTF, and PBF, may be a potential independent risk factor for the development of T2DM. Additionally, IFV exacerbates glucose metabolic dysfunction. Intra-lobular pancreatic fat indices were better than IFV for the diagnosis of glucose metabolic dysfunction

    A multiplex TaqMan real-time PCR assays for the rapid detection of mobile colistin resistance (mcr-1 to mcr-10) genes

    Get PDF
    ObjectiveRecently, 10 plasmid-mediated mobile colistin resistance genes, mcr-1 to mcr-10, and their variants have been identified, posing a new threat to the treatment of clinical infections caused by Gram-negative bacteria. Our objective was to develop a rapid, sensitive, and accurate molecular assay for detecting mcr genes in clinical isolates.MethodsThe primers and corresponding TaqMan-MGB probes were designed based on the sequence characteristics of all reported MCR family genes, multiplex Taqman-MGB probe-based qPCR assays were developed and optimized, and the sensitivity, specificity and reproducibility of the method were evaluated. The assay contained 8 sets of primers and probes in 4 reaction tubes, each containing 2 sets of primers and probes.ResultsThe standard curves for both the single and multiplex systems showed good linearity (R2 > 0.99) between the starting template amount and the Ct value, with a lower limit of detection of 102 copies/μL. The specificity test showed positive amplification results only for strains containing the mcr genes, whereas the other strains were negative. The results of intra-and inter-group repeatability experiments demonstrated the stability and reliability of the newly developed method. It was used to detect mcr genes in 467 clinically-obtained Gram-negative isolates, which were multidrug-resistant. Twelve strains containing the mcr genes were detected (seven isolates carrying mcr-1, four isolates carrying mcr-10, and one isolate carrying mcr-9). The products amplified by the full-length PCR primer were identified by sequencing, and the results were consistent with those of the multiplex qPCR method.ConclusionThe assay developed in this study has the advantages of high specificity, sensitivity, and reproducibility. It can be used to specifically detect drug-resistant clinical isolates carrying the mcr genes (mcr-1 to mcr-10), thus providing a better basis for clinical drug treatment and drug resistance research
    • …
    corecore