
PHYSICAL REVIEW B 94, 184201 (2016)

Constant real-space fractal dimensionality and structure evolution in Ti62Cu38 metallic
glass under high pressure

Liangliang Li,1,2 Luhong Wang,1,* Renfeng Li,1,2 Haiyan Zhao,3,4 Dongdong Qu,5

Karena W. Chapman,4 Peter J. Chupas,4 and Haozhe Liu1,2,†
1Harbin Institute of Technology, Harbin 150080, China

2Center for High Pressure Science and Technology Advanced Research, Changchun 130015, China
3Center for Advanced Energy Studies, University of Idaho, Idaho Falls, Idaho 83406, USA

4Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
5School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia

(Received 11 August 2016; revised manuscript received 21 October 2016; published 7 November 2016)

The structure of binary Ti62Cu38 metallic glass is investigated under pressures up to 33.8 GPa using the pair
distribution function analysis based on high-energy x-ray scattering and reverse Monte Carlo (RMC) simulations.
At a global scale, its relative volume shows a continuously smooth curve as a function of pressure. The isothermal
bulk modulus of Ti62Cu38 metallic glass is estimated as B0 = 132(3) GPa with B ′

0 = 5.8(0.4). At a local scale, the
atomic packing structure under compression conditions, which is extracted from RMC simulations, shows that
the topological short-range order is dominated by the deformed icosahedron polyhedra and basically maintains
stable. From the relationship between the relative volume and changing ratio of the atomic separation distances,
the real-space fractal dimensionality of this metallic glass is determined as about 2.5 for all of the first four peaks.
This experimental result reveals the consistent nature of the fractal feature on the degree of self-similarity in this
sample within the entire experimental pressure range.

DOI: 10.1103/PhysRevB.94.184201

The fractal feature has been suggested in glass systems
for many years. Very recently, links between the structures
of metallic glasses and fractal dimensionality under high-
pressure conditions were discovered [1–3]. A power-law
exponent of 2.5 in the relationship between density and the
so-called the first strong diffraction peak in reciprocal space
was proposed as a universal feature for metallic glasses under
compression [2,3]. Furthermore, the fractal dimensionality
of metallic glasses in real space was found to remain about
2.5 as well, which was calculated from the atomic nearest-
neighbor distance for the pair distribution function (PDF)
in two typical binary metallic glasses of Cu-Zr and Ni-Al
systems up to 20 GPa from classical molecular dynamics (MD)
simulations [1]. More interestingly, the pressure dependence
of the crossover feature on the power-law exponent shifting
from 2.5 to 3 with increasing atomic separation distance was
proposed, which related to the pressure tuning the correlation
length change based on the continuum percolation model [1].
However, no experimental PDF data were reported to examine
the real-space fractal dimensionality for any metallic glass
system and the validity of these fractal features in real space
for metallic glass under high-pressure conditions needs to be
checked by measured data in addition to the MD simulations.
Based on this motivation, a typical binary metallic glass Ti-Cu
system, which has been studied at ambient conditions for
many years [4–6], was selected as the model for the study of
structure and real-space fractal dimensionality under pressure
conditions in this paper.

Due to the complexity of the experimental and analytical
procedures, investigation of the atomic level structure in real
space for nonperiodic systems under high-pressure conditions
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is exceedingly rare. For example, the limited range of Q

in previous high-pressure x-ray-scattering measurements re-
stricted the accuracy of Fourier transforms to real-space PDFs,
therefore MD simulations instead of measured PDFs were
used to study the structure evolution of metallic glass upon
compression [1]. The PDF method is able to provide valuable
insights into the local atomic structure and recently became
an advanced structure analysis technique combined with
the synchrotron high-energy x-ray-scattering measurement in
the high-Q range [7,8]. Since the PDF method provides real-
space structural information in one dimension, simulations of
the total scattering data using modeling techniques, such as
reverse Monte Carlo (RMC) simulations, are extremely useful
for visualizing the three-dimensional atomic arrangement of
liquid and amorphous materials [9,10]. Furthermore, combin-
ing the density information derived from the RMC fitting with
the measured PDF, the fractal dimensionality of the system, if
it exists, can be determined in real space.

The total x-ray-scattering data for metallic glass Ti62Cu38

under high pressure at room temperature were collected at
the sector 11-ID-B beamline at the Advanced Photon Source,
Argonne National Laboratory, using an incident beam with
a size of 150 × 150 μm2 and a high energy of 86.7 keV.
A two-dimensional large amorphous-silicon-based flat-panel
detector was used to record the scattering x ray. A sample
with a dimension of 150 × 150 × 20 μm3 was located in the
sample chamber, which is a T301 stainless steel gasket with
a 270-μm-diam hole between the two anvils of the diamond
anvil cell. The pressure medium was 1:4 methanol/ethanol and
pressure was measured using ruby fluorescence method [11].

Raw two-dimensional image data were processed using the
FIT-2D [12] software with a masking strategy [13] to mask
the diamond peaks to obtain one-dimensional scattering data.
After subtracting the contributions from the sample environ-
ment and background, the structure factor S(Q) and reduced
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PDF G(r) were extracted using the PDFGETX2 program [14],
which performs a numerical Fourier transformation between
S(Q) and G(r) according to

G(r) = 4πrρ0[g(r) − 1]

= 2

π

∫ ∞

0
Q[S(Q) − 1] sin(Qr)dQ, (1)

where ρ0 is the average atomic number density and g(r) is the
pair distribution function.

The RMC method was performed using a cubic box with
periodic boundary conditions containing 10 000 atoms to fit
the x-ray-scattering data for the Ti62Cu38 metallic glass using
RMC++ [15]. A random initial configuration with a number

density of 0.0656 Å
−3

was used for the ambient pressure RMC
fitting, where the density was based on a value measured by the
Archimedes method. At high pressure, the number densities
were determined by adjusting the simulation box to provide
the best match between the RMC and experimental data.

Changes in the structure factor S(Q) and the corresponding
PDF for Ti62Cu38 metallic glass at various pressure conditions
are displayed in Fig. 1. The splitting of the second peak in
both S(Q) and the PDF observed at each measured pressure
is the characteristic indicator for conventional amorphous
systems [16,17]. In reciprocal space, the relation between
the first peak position Q1 and the second peak position Q2,
as well as Q2shoulder, which is the position of the shoulder
of the second peak, was proposed to relate to specific
types of short-range order [18]. For example, the perfect
icosahedron short-range order characterized by Q2/Q1 is 1.71
and by Q2shoulder/Q1 is 2.04 [19] and the short-range order
in liquid pure Ti characterized by Q2/Q1 is 1.76(0.01) and
by Q2shoulder/Q1 is 1.92(0.01) [20]. Two Gaussian functions
are used to fit the second peak and the results show that the
ratio of the peak positions Q2/Q1 remains about 1.69(0.01)
and Q2shoulder/Q1 about 1.95(0.01), indicating the continuing
existence of somewhat distorted icosahedral short-range order
in this Ti62Cu38 metallic glass [19,20].

With increasing pressure, the first peak position Q1 of the
structure factor S(Q) in reciprocal space shifts towards higher
Q, while the nearest-neighbor distance r1 in real space shifts
to shorter distances. These characteristic peak shifts reflect
the volume shrinkage and the density increase caused by high
pressure. In this work, the density information is derived from
RMC simulations. The RMC fit quality at various pressures
is also presented in Fig. 1, which displays a good match
between the fitting and experimental data. The fitting error of
the derived density at each pressure point is within 2.7%. The
relative volume V/V0 of the binary metallic glass Ti62Cu38 as a
function of pressure is presented in Fig. 2. A decline in volume
of about 15% is observed from ambient conditions to 33.8 GPa.
Fitting the data by using the third-order Birch-Murnaghan
equation of state (EOS), it is shown that the isothermal bulk
modulus of Ti62Cu38 is B0 = 132(3) GPa when B ′

0 = 5.8(0.4).
Changes in the relative volume as a function of pressure exhibit
a continuously smooth curve, indicating that no detectable
phase transition exists within the pressure range investigated
in this work.

The first peak position Q1 and the nearest-neighbor distance
r1 as a function of pressure are shown in insets (a) and (b) of

FIG. 1. (a) Experimental structure factor S(Q) and (b) pair
distribution function g(r) of the Ti62Cu38 metallic glass (blue solid
line) at various pressure conditions, with the corresponding RMC fits
(red open-circle line).

FIG. 2. Relative volume V/V0 of the Ti62Cu38 metallic glass as
a function of pressure derived from the RMC fit. The blue solid line
shows the data fitting using the third-order Birch-Murnaghan EOS.
Inset (a) shows changes in the ratio of the first peak position Q1 and
inset (b) the nearest-neighbor distance r1 induced by pressure.
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FIG. 3. Relative volume V/V0 as a function of (a) the ratio of the
first and second peak positions in reciprocal space and (b) the ratio
of peak position ri in real space, where i = 1,2,3, and 4.

Fig. 2, respectively. The changes in the density related to the
first strong peak shifts in both reciprocal space and real space
were discovered to follow the power law [1–3]

V

V0
=

(
Q10

Q1p

)Df Q

or
V

V0
=

(
r1p

r10

)Df r

, (2)

where V0 is the average atomic volume, Q10 is the first
peak position of structure factor S(Q), and r10 is the nearest-
neighbor distance under ambient pressure conditions; V , Q1p,
and r1p are the corresponding values under high-pressure
conditions; and Df Q and Df r are the power exponents
determined by the changing ratio of Q1 and r1, respectively.
According to the exponent fitting of the power law in formula
(2), Df Q1 of 2.50(0.01) is determined in reciprocal space by
using value change of Q1. In real space, Df r1 is determined as
2.52(0.04) according to a change in nearest-neighbor distance
r1, as shown in Figs. 3(a) and 3(b), respectively. These results
are close to the previous reported values of Df Q1 = 2.50 [1,2]
and Df r1 = 2.54 in other metallic glass systems from MD
simulations [1]. The nonintegers Df Q and Df r reveal these
fractal dimensionalities as scale parameters, which reflect the
degree of self-similarity in medium-range and short-range
ordering in the currently studied metallic glass system, and
are in agreement with previous reports [1,2].

From real-space PDF curves at various pressure condi-
tions, fractal dimensionalities were determined by normalized
positions of the second peak r2, the third peak r3, and the
fourth peak r4 as 2.44(0.05), 2.59(0.02), and 2.48(0.02),
respectively, as shown in Fig. 3(b). A roughly consistent fractal
dimensionality of about 2.5 is observed, which surprisingly
extends far beyond the nearest-neighbor range in real space in
this metallic glass system. This is different from the results of
previous MD simulations, which suggested that the power-law
exponent crossover phenomenon could be common in metallic
glass systems [1]. It is well known that the limitation of
classical MD simulations strongly depends on the quality of
the potential. As pointed out in the Supplemental Material in
Ref. [1], the embedded-atomic-method-type potentials used in

its MD simulations normally are not tested for high-pressure
conditions, which may result in errors. Thus the simulated
crossover of the power-law exponent from about 2.5 to 3 with
increasing atomic separation distance in real space might not
be a general feature in metallic glass systems, at least not for
this Ti-Cu glass system. Instead, from the current measured
PDF data, the real-space fractal dimensionality could remain
constant about 2.5 over a large pair distribution range up to
above 30-GPa conditions. This consistent nature of fractal
dimensionality from various PDF peaks in real space reflects
the constant degree of self-similarity in various building block
domains in this system, which actually works well in a much
bigger atomic separation distance range than that in previous
MD simulations [1]. This discovery improves the understand-
ing for the real-space fractal feature in metallic glass and
offers a practical way for the challenging density estimation for
nonperiodic systems under high-pressure conditions by using
their measured PDF regardless of the crossover in its power-
law exponent when the pressure is close to 15–20 GPa [1].

For the PDF peaks higher than the fourth one, the relations
between Vp/V0 and rip/ri0 (i > 4) become featureless and
could not be fitted according to Eq. (2). This might be related
to the limitation effect of the correlation length and needs more
measured data to prove its generality in metallic glass systems.
The asymptotic behavior of these PDFs in the higher-r range
could be related to the fractal feature, which was proposed
by Ma et al. [21]. A sinusoidal function was introduced to
describe the oscillatory correlation at the far end of the PDF
curves in real space, following the early fractal model on the
colloidal system [22]

g(r) = (A/rD−Df ) exp(−r/ξ ) sin(Q1r − φ) + 1, (3)

where A is the amplitude, D = 3 is the dimensionality in
three-dimensional Euclidean space, ξ is the cutoff length, Q1

is the position of the first strong diffraction peak in reciprocal
space, and φ is a phase. In the Ti68Cu32 metallic glass system,
Df = 2.51 applied in this equation is the average of Df i ,
where i = 1,2,3,4.

However, this fractal model of asymptotic behavior was
challenged by a recent study based on binary alloy liquid cases
[23], in which the asymptotic behavior of their PDFs could also
be fitted well by the Ornstein-Zernike (OZ) model, which is a
pole analysis for binary systems [24,25]. In the OZ approach,
asymptotic behavior of the PDF could be described as

g(r) = (2|A|/r) exp(−r/ε) sin(Q1r − θ ) + 1, (4)

whereA is the amplitude, θ is a phase, and ε is the decay length.
As pointed out previously [23], the only significant difference
between Eqs. (3) and (4) is the power exponent of r .

Using Eqs. (3) and (4), three sets of typical g(r) curves
under various pressure conditions were selected for the
fitting as shown in Fig. 4. It is clear that both equations
mathematically fit almost equally well for the high-r range
from the fourth peak to 29.99 Å, as indexed by the very close
values for the goodness-of-fit parameters R2. All the fitting
parameters are summarized in Table I. The fitting results
present a tradeoff effect, i.e., the bigger Df is, the smaller
the cutoff or decay length would be. It is noted that physical
models corresponding to two equations are quite different,
as discussed previously [23]. Therefore, good fitting of both
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FIG. 4. Fitting results of the asymptotic decay in the large-r range
for three sets of typical g(r) using the fractal and OZ approaches. The
thick gray line represents the g(r) from experiment. The thin red and
blue lines show fits of the fractal and OZ models, respectively.

equations suggests that the proposed asymptotic decay fitting
[21] is not the practice method to obtain physically reliable
parameters for fractal dimensionality. Instead, the method of
relative change of the individual peak position in the real-space
PDF could provide more stable scale invariance for fractal
dimensionality.

It is interesting to compare the fractal feature between the
Ti68Cu32 metallic glass system under high pressure with other
available high-pressure cases, such as the metallic system
of liquid gallium. The fractal dimensionality in the Ti68Cu32

metallic glass system is determined to be uniformly about 2.5
from the first four PDF peaks. In contrast, in liquid gallium,
the power exponent Df extracted from both the third and
fourth peaks is smaller than 3, whereas from both the first
and second peaks it is bigger than 3, estimated from the
measured data [26]. The corresponding parameters of fractal
dimensionality in liquid Ga depend on the PDF peak positions,
which demonstrate unique physical features and indicate a
more complicated feature than metallic glass cases.

Information on the atomic packing characteristics, such as
the bond length, atomic coordination number, and local atomic
environment, can be extracted from the RMC atomic config-
urations using the Voronoi tessellation technique [27,28]. The
Voronoi polyhedra are indexed by 〈n3,n4,n5,n6, . . .〉 to specify
the polyhedron type and describe the local environment of
the associated central atom, where ni denotes the number of
i-edged faces of a Voronoi polyhedron.

FIG. 5. Bond distance as a function of the pressure. The Cu-Cu,
Ti-Ti, and Ti-Cu bond lengths are represented by open circles, open
squares, and open stars, respectively.

The bond length derived from the Voronoi polyhedron
provides information on the interatomic distance’s shortening
trend as the pressure increases, as shown in Fig. 5. In particular,
the bond length ratio between the solute and solvent atoms,
referred to as the effective atomic size ratio, controls the
coordination number (CN) [29,30]. The effective atomic size
ratio in the metallic glass Ti62Cu38 studied herein is 1.02 and
this ratio remains nearly constant with increasing pressure.
The stable effective atomic size ratio generally leads to the
dominant CNs within the first nearest-neighbor shell, which
are dominated by CNs of 12, 13, and 14 as shown in Fig. 6(a),
not changing with increasing pressure. By the same token,
the average CN, Ti-centered average CN, and Cu-centered
average CN in this metallic glass Ti62Cu38 are nearly constant
at 13.06(0.04), 12.86(0.06), and 13.39(0.07), respectively, in
the first nearest-neighbor shell. This modeling result is similar
to the result of other metallic glass, such as the Pd81Si19 system
upon compression above 30 GPa, where the CN remains
unchanged with increasing pressure as well [31]. Additionally,
it is also found that the CN determined by the effective atomic
size ratio causes the Cu-centered average CN to be greater than
the Ti-centered CN [30].

The effective atomic size ratio is also correlated with the
type of coordination polyhedra under pressure [30]. The nearly
unchanged effective atomic size ratio leads to the frequencies
of the dominant coordination polyhedral types being similar
and only slightly fluctuating with increasing pressure. The
frequencies of the dominant Voronoi polyhedra within the first

TABLE I. Parameters obtained by fitting three sets of selected g(r) to Eq. (3) based on the fractal model and to Eq. (4) based on the OZ
model.

Fractal model OZ model

Pressure Range (Å) R2 ξ (Å) A φ R2 ε (Å) A θ

1.0 atm 8.39–29.99 0.958 3.47(8) 4.6(3) 0.27(1) 0.958 4.14(9) 4.6(3) 0.27(1)
18.9 GPa 8.09–29.99 0.969 3.25(6) 5.4(3) 0.26(1) 0.969 3.85(8) 5.3(3) 0.26(1)
33.8 GPa 7.99–29.99 0.957 3.06(7) 6.7(5) 0.26(1) 0.958 3.60(9) 6.6(5) 0.26(1)
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FIG. 6. (a) The CN distributions and (b) fractions of dominant
coordination polyhedra in Ti62Cu38 metallic glass under selected
pressure conditions of 1.0 atm, 18.9 GPa, and 33.8 GPa. Similar
trends are found at other pressure points. Note that only the polyhedra
with a fraction more than 2% are shown.

nearest-neighbor shell under three representative pressures of
1.0 atm, 18.9 GPa, and 33.8 GPa are illustrated in Fig. 6(b).

Note that there is a one-to-one correspondence between the
Voronoi index and the coordination polyhedron. Voronoi poly-
hedra with indices 〈0,2,8,1〉 and 〈0,0,12,0〉 corresponding to
the deformed prism and icosahedron polyhedra, respectively,
both contribute to a small fraction in this system. The
polyhedra of the deformed crystal feature, which are indexed
by 〈0,3,6,4〉, 〈0,3,6,5〉, 〈0,4,4,6〉, and 〈0,2,8,5〉, contribute
18.1% and 17.0% to the entire system, at 1.0 atm and
33.8 GPa, respectively. In contrast, at 1.0 atm and 33.8 GPa,
the deformed icosahedron polyhedra indexed by 〈0,2,8,2〉,
〈0,3,6,3〉, 〈0,1,10,2〉, 〈0,2,8,3〉, 〈0,2,8,4〉, 〈0,1,10,3〉, and
〈0,1,10,4〉 amount to large fractions of 30.3% and 28.5%,
respectively. This clearly indicates that the deformed icosahe-
dron is the main topological short-range order in the Ti62Cu38

metallic glass, which is consistent with the results obtained
from the Q2/Q1 and Q2shoulder/Q1 ratios analyses. At the local
scale, the structure of the Ti62Cu38 metallic glass is basically
stable as a function of pressure.

In summary, Ti62Cu38 metallic glass was investigated using
in situ synchrotron high-energy x-ray scattering combined with
the PDF analysis and RMC fitting under high pressure. The
relative volume as a function of pressure was determined as
a continuously smooth curve. No major changes existed in
the effective atomic size ratio, CN, and dominant polyhedron
type at various pressure conditions, which indicated the
absence of pressure-induced polyamorphism. Moreover, the
real-space fractal dimensionality as an index of the degree
of self-similarity in this system remained constant at about
2.5, revealing its intrinsic fractal nature within a large atomic
separation distance up to about 10.5 Å in the entire pressure
region up to 33.8 GPa.
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