305 research outputs found

    Unconditional Security of Three State Quantum Key Distribution Protocols

    Full text link
    Quantum key distribution (QKD) protocols are cryptographic techniques with security based only on the laws of quantum mechanics. Two prominent QKD schemes are the BB84 and B92 protocols that use four and two quantum states, respectively. In 2000, Phoenix et al. proposed a new family of three state protocols that offers advantages over the previous schemes. Until now, an error rate threshold for security of the symmetric trine spherical code QKD protocol has only been shown for the trivial intercept/resend eavesdropping strategy. In this paper, we prove the unconditional security of the trine spherical code QKD protocol, demonstrating its security up to a bit error rate of 9.81%. We also discuss on how this proof applies to a version of the trine spherical code QKD protocol where the error rate is evaluated from the number of inconclusive events.Comment: 4 pages, published versio

    Generalized Entropies

    Full text link
    We study an entropy measure for quantum systems that generalizes the von Neumann entropy as well as its classical counterpart, the Gibbs or Shannon entropy. The entropy measure is based on hypothesis testing and has an elegant formulation as a semidefinite program, a type of convex optimization. After establishing a few basic properties, we prove upper and lower bounds in terms of the smooth entropies, a family of entropy measures that is used to characterize a wide range of operational quantities. From the formulation as a semidefinite program, we also prove a result on decomposition of hypothesis tests, which leads to a chain rule for the entropy.Comment: 21 page

    Spherical Code Key Distribution Protocols for Qubits

    Full text link
    Recently spherical codes were introduced as potentially more capable ensembles for quantum key distribution. Here we develop specific key creation protocols for the two qubit-based spherical codes, the trine and tetrahedron, and analyze them in the context of a suitably-tailored intercept/resend attack, both in standard form, and a ``gentler'' version whose back-action on the quantum state is weaker. When compared to the standard unbiased basis protocols, BB84 and six-state, two distinct advantages are found. First, they offer improved tolerance of eavesdropping, the trine besting its counterpart BB84 and the tetrahedron the six-state protocol. Second, the key error rate may be computed from the sift rate of the protocol itself, removing the need to sacrifice key bits for this purpose. This simplifies the protocol and improves the overall key rate.Comment: 4 pages revtex, 2 figures; clarified security analysis. Final version for publicatio

    Over de effectiviteit van zoekkanalen voor werkgevers en werknemers

    Get PDF

    Minimal Informationally Complete Measurements for Pure States

    Full text link
    We consider measurements, described by a positive-operator-valued measure (POVM), whose outcome probabilities determine an arbitrary pure state of a D-dimensional quantum system. We call such a measurement a pure-state informationally complete (PSI-complete) POVM. We show that a measurement with 2D-1 outcomes cannot be PSI-complete, and then we construct a POVM with 2D outcomes that suffices, thus showing that a minimal PSI-complete POVM has 2D outcomes. We also consider PSI-complete POVMs that have only rank-one POVM elements and construct an example with 3D-2 outcomes, which is a generalization of the tetrahedral measurement for a qubit. The question of the minimal number of elements in a rank-one PSI-complete POVM is left open.Comment: 2 figures, submitted for the Asher Peres festschrif

    A prolonged ICU stay after interhospital transport?

    Get PDF
    Transport of critically ill patients can be complicated [1-3]. Barratt and colleagues studied patients transferred for nonclinical reasons to evaluate the consequences of transportation [4]. Th ere was no diff erence in mortality but the ICU length of stay (LOS) increased by 3  days, which was explained as a negative impact of the transport on patient physiology. We disagree with this conclusion. First, by including only transports to level 3 ICUs the received level of care for transported patients will increase, introducing a bias. Second, the increase in LOS can be interpreted as a result of selection bias, because patients with a short expected LOS would often not be considered eligible for transport. Also, since there was no increase in mortality, which would have been expected with an increased LOS, we might be looking at a mortality reduction as a result of the transfer to a higher-level ICU. Th ird, Barrett and colleagues suggest that deterioration of patient physiology during transport is probably respon sible for the increase in LOS. However, the reported Intensive Care National Audit and Research Centre scores before and after transport (although not validated for sequential patient assessments) do not support this assumption. Fourth, the method of transportation should have been included in this study. Specialised transport teams deliver patients with a better acute physiology compared with nonspecialised teams [2,5], making a need for regaining physiological stability unlikely. In conclusion, we congratulate Barratt and colleagues for their research. However, we think their conclusion is premature because multiple possible confounders were not taken into account

    The Lie Algebraic Significance of Symmetric Informationally Complete Measurements

    Get PDF
    Examples of symmetric informationally complete positive operator valued measures (SIC-POVMs) have been constructed in every dimension less than or equal to 67. However, it remains an open question whether they exist in all finite dimensions. A SIC-POVM is usually thought of as a highly symmetric structure in quantum state space. However, its elements can equally well be regarded as a basis for the Lie algebra gl(d,C). In this paper we examine the resulting structure constants, which are calculated from the traces of the triple products of the SIC-POVM elements and which, it turns out, characterize the SIC-POVM up to unitary equivalence. We show that the structure constants have numerous remarkable properties. In particular we show that the existence of a SIC-POVM in dimension d is equivalent to the existence of a certain structure in the adjoint representation of gl(d,C). We hope that transforming the problem in this way, from a question about quantum state space to a question about Lie algebras, may help to make the existence problem tractable.Comment: 56 page
    • …
    corecore