7 research outputs found

    Scientific and Regulatory Policy Committee (SRPC) Review*: Interpretation and Use of Cell Proliferation Data in Cancer Risk Assessment

    Get PDF
    Increased cell proliferation is a central key event in the mode of action for many non-genotoxic carcinogens, and quantitative cell proliferation data play an important role in the cancer risk assessment of many pharmaceutical and environmental compounds. Currently, there is limited unified information on assay standards, reference values, targeted applications, study design issues, and quality control considerations for proliferation data. Here, we review issues in measuring cell proliferation indices, considerations for targeted studies, and applications within current risk assessment frameworks. As the regulatory environment moves toward more prospective evaluations based on quantitative pathway-based models, standardiza- tion of proliferation assays will become an increasingly important part of cancer risk assessment. To help address this development, we also discuss the potential role for proliferation data as a component of alternative carcinogenicity testing models. This information should improve consistency of cell proliferation methods and increase efficiency of targeted testing strategies

    Pulmonary embolization of fat and bone marrow in cynomolgus Macaques (Macaca fascicularis).

    No full text
    Fat embolization (FE), the introduction of bone marrow elements into circulation, is a known complication of bone fractures. Although FE has been described in other animal models, this study represents the first reported cases of FE and bone marrow embolism in nonhuman primates. Histopathologic findings from cynomolgus macaques (Macaca fascicularis) indicated that in all 5 cases, fat and bone marrow embolization occurred subsequent to multiple bone marrow biopsies. In the most severe case, extensive embolization was associated pulmonary damage consistent with acute respiratory distress syndrome. Fat embolism syndrome (FES) is an infrequent clinical outcome of FE and is triggered by systemic biochemical and mechanical responses to fat in circulation. Although clinical criteria diagnostic of FES were not investigated at the time of death, this severe case may represent the fulminant form of FES, which occurs within 12 h after trauma. Bone marrow biopsy as an etiology of FES has been reported only once in humans. In addition, the association of embolization with bone marrow biopsies suggests that nonhuman primates may be a useful animal model of FE. FE and FES represent important research confounders and FES should be considered as a differential diagnosis for clinical complications subsequent to skeletal trauma

    Comparison of commercially available and novel West Nile virus immunoassays for detection of seroconversion in pig-tailed macaques (Macaca nemestrina)

    No full text
    We report the assessment and validation of an NS1 epitope-blocking enzyme-linked immunosorbent assay (ELISA) for detection of antibodies to West Nile virus (WNV) in macaques. Sera from naturally infected Macaca nemestrina were tested by ELISA and plaque reduction neutralization test (PRNT). Results were correlated with hemagglutination inhibition (HAI) data. Our results demonstrate that the blocking ELISA rapidly and specifically detects WNV infection in M. nemestrina. In addition, the diagnostic value of 7 commercially available immunoassays (PanBio immunoglobulin [Ig] M ELISA, PanBio IgG ELISA, PanBio immunofluorescence assay (IFA), InBios IgG ELISA, InBios IgM ELISA, Focus Diagnostics IgG ELISA, and Focus Diagnostics IgM ELISA) in M. nemestrina was evaluated and compared with that of the epitope-blocking ELISA. The PanBio IgG ELISA was found to effectively diagnose WNV exposure in M. nemestrina. Further, PanBio IFA slides are fast and reliable screening tools for diagnosing flaviviral exposure in M. nemestrina
    corecore