82 research outputs found

    Schizophrenia-risk and urban birth are associated with proteomic changes in neonatal dried blood spots.

    Get PDF
    In the present study, we tested whether there were proteomic differences in blood between schizophrenia patients after the initial onset of the disorder and controls; and whether those differences were also present at birth among neonates who later developed schizophrenia compared to those without a psychiatric admission. We used multiple reaction monitoring mass spectrometry to quantify 77 proteins (147 peptides) in serum samples from 60 first-onset drug-naive schizophrenia patients and 77 controls, and 96 proteins (152 peptides) in 892 newborn blood-spot (NBS) samples collected between 1975 and 1985. Both serum and NBS studies showed significant alterations in protein levels. Serum results revealed that Haptoglobin and Plasma protease C1 inhibitor were significantly upregulated in first-onset schizophrenia patients (corrected P < 0.05). Alpha-2-antiplasmin, Complement C4-A and Antithrombin-III were increased in first-onset schizophrenia patients (uncorrected P-values 0.041, 0.036 and 0.013, respectively) and also increased in newborn babies who later develop schizophrenia (P-values 0.0058, 0.013 and 0.044, respectively). We also tested whether protein abundance at birth was associated with exposure to an urban environment during pregnancy and found highly significant proteomic differences at birth between urban and rural environments. The prediction model for urbanicity had excellent predictive performance in both discovery (area under the receiver operating characteristic curve (AUC) = 0.90) and validation (AUC = 0.89) sample sets. We hope that future biomarker studies based on stored NBS samples will identify prognostic disease indicators and targets for preventive measures for neurodevelopmental conditions, particularly those with onset during early childhood, such as autism spectrum disorder

    Maternal Cadmium Exposure during Pregnancy and Size at Birth: A Prospective Cohort Study

    Get PDF
    Background: Cadmium (Cd) is an embryotoxic and teratogenic metal in a variety of animal species, but data from humans are limited

    Antenatal nutritional supplementation and autism spectrum disorders in the Stockholm youth cohort:population based cohort study

    Get PDF
    Abstract Objective To determine whether nutritional supplementation during pregnancy is associated with a reduced risk of autism spectrum disorder (ASD) with and without intellectual disability in offspring. Design Observational prospective cohort study using multivariable logistic regression, sibling controls, and propensity score matching. Setting Stockholm County, Sweden. Participants 273 107 mother-child pairs identified through population registers. The study sample was restricted to children who were aged 4 to 15 years by the end of follow-up on 31 December 2011 and were born between 1996 and 2007. Exposures Multivitamin, iron, and folic acid supplement use was reported at the first antenatal visit. Main outcome measure Diagnosis of ASD with and without intellectual disability in children determined from register data up to 31 December 2011. Results Prevalence of ASD with intellectual disability was 0.26% (158 cases in 61 934) in the maternal multivitamin use group and 0.48% (430 cases in 90 480) in the no nutritional supplementation use group. Maternal multivitamin use with or without additional iron or folic acid, or both was associated with lower odds of ASD with intellectual disability in the child compared with mothers who did not use multivitamins, iron, and folic acid (odds ratio 0.69, 95% confidence interval 0.57 to 0.84). Similar estimates were found in propensity score matched (0.68, 0.54 to 0.86) and sibling control (0.77, 0.52 to 1.15) matched analyses, though the confidence interval for the latter association included 1.0 and was therefore not statistically significant. There was no consistent evidence that either iron or folic acid use were inversely associated with ASD prevalence. Conclusions Maternal multivitamin supplementation during pregnancy may be inversely associated with ASD with intellectual disability in offspring. Further scrutiny of maternal nutrition and its role in the cause of autism is recommended. </jats:sec

    Arsenic-Associated Oxidative Stress, Inflammation, and Immune Disruption in Human Placenta and Cord Blood

    Get PDF
    BACKGROUND: Arsenic (As) exposure during pregnancy induces oxidative stress and increases the risk of fetal loss and low birth weight. OBJECTIVES: In this study we aimed to elucidate the effects of As exposure on immune markers in the placenta and cord blood, and the involvement of oxidative stress. METHODS: Pregnant women were enrolled around gestational week (GW) 8 in our longitudinal, population-based, mother-child cohort in Matlab, an area in rural Bangladesh with large variations in As concentrations in well water. Women (n = 130) delivering at local clinics were included in the present study. We collected maternal urine twice during pregnancy (GW8 and GW30) for measurements of As, and placenta and cord blood at delivery for assessment of immune and inflammatory markers. Placental markers were measured by immunohistochemistry, and cord blood cytokines by multiplex cytokine assay. RESULTS: In multivariable adjusted models, maternal urinary As (U-As) exposure both at GW8 and at GW30 was significantly positively associated with placental markers of 8-oxoguanine (8-oxoG) and interleukin-1β (IL-1β); U-As at GW8, with tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ); and U-As at GW30, with leptin; U-As at GW8 was inversely associated with CD3+ T cells in the placenta. Cord blood cytokines (IL-1β, IL-8, IFNγ, TNFα) showed a U-shaped association with U-As at GW30. Placental 8-oxoG was significantly positively associated with placental proinflammatory cytokines. Multivariable adjusted analyses suggested that enhanced placental cytokine expression (TNFα and IFNγ) was primarily influenced by oxidative stress, whereas leptin expression appeared to be mostly mediated by As, and IL-1β appeared to be influenced by both oxidative stress and As. CONCLUSION: As exposure during pregnancy appeared to enhance placental inflammatory responses (in part by increasing oxidative stress), reduce placental T cells, and alter cord blood cytokines. These findings suggest that effects of As on immune function may contribute to impaired fetal and infant health

    Expanding Clinical Presentations Due to Variations in THOC2 mRNA Nuclear Export Factor

    Get PDF
    Multiple TREX mRNA export complex subunits (e.g., THOC1, THOC2, THOC5, THOC6, THOC7) have now been implicated in neurodevelopmental disorders (NDDs), neurodegeneration and cancer. We previously implicated missense and splicing-defective THOC2 variants in NDDs and a broad range of other clinical features. Here we report 10 individuals from nine families with rare missense THOC2 variants including the first case of a recurrent variant (p.Arg77Cys), and an additional individual with an intragenic THOC2 microdeletion (Del-Ex37-38). Ex vivo missense variant testing and patient-derived cell line data from current and published studies show 9 of the 14 missense THOC2 variants result in

    Probing Microsecond Time Scale Dynamics in Proteins by Methyl 1H Carr−Purcell−Meiboom−Gill Relaxation Dispersion NMR Measurements. Application to Activation of the Signaling Protein NtrCr

    Get PDF
    To study microsecond processes by relaxation dispersion NMR spectroscopy, low power deposition and short pulses are crucial and encourage the development of experiments that employ H-1 Carr-Purcell-Meiboom-Gill (CPMG) pulse trains. Herein, a method is described for the comprehensive study of microsecond to millisecond time scale dynamics of methyl groups in proteins, exploiting their high abundance and favorable relaxation properties. In our approach, protein samples are produced using [H-1, C-13]-D-glucose in similar to 100% D2O, which yields CHD2 methyl groups for alanine, valine, threonine, isoleucine, leucine, and methionine residues with high abundance, in an otherwise largely deuterated background. Methyl groups in such samples can be sequence-specifically assigned to near completion, using C-13 TOCSY NMR spectroscopy, as was recently demonstrated (Often, R.; et al. J. Am. Chem. Soc. 2010, 132, 2952-2960). In this Article, NMR pulse schemes are presented to measure H-1 CPMG relaxation dispersion profiles for CHD2 methyl groups, in a vein similar to that of backbone relaxation experiments. Because of the high deuteration level of methyl-bearing side chains, artifacts arising from proton scalar coupling during the CPMG pulse train are negligible, with the exception of Ile-delta 1 and Thr-gamma 2 methyl groups, and a pulse scheme is described to remove the artifacts for those residues. Strong C-13 scalar coupling effects, observed for several leucine residues, are removed by alternative biochemical and NMR approaches. The methodology is applied to the transcriptional activator NtrC(r), for which an inactive/active state transition was previously measured and the motions in the microsecond time range were estimated through a combination of backbone N-15 CPMG dispersion NMR spectroscopy and a collection of experiments to determine the exchange-free component to the transverse relaxation rate. Exchange contributions to the H-1 line width were detected for 21 methyl groups, and these probes were found to collectively report on a local structural rearrangement around the phosphorylation site, with a rate constant of (15.5 +/- 0.5) x 10(3) per second (i.e., tau(ex) = 64.7 +/- 1.9 mu s). The affected methyl groups indicate that, already before phosphorylation, a substantial, transient rearrangement takes place between helices 3 and 4 and strands 4 and 5. This conformational equilibrium allows the protein to gain access to the active, signaling state in the absence of covalent modification through a shift in a pre-existing dynamic equilibrium. Moreover, the conformational switching maps exactly to the regions that differ between the solution NMR structures of the fully inactive and active states. These results demonstrate that a cost-effective and quantitative study of protein methyl group dynamics by H-1 CPMG relaxation dispersion NMR spectroscopy is possible and can be applied to study functional motions on the microsecond time scale that cannot be accessed by backbone N-15 relaxation dispersion NMR. The use of methyl groups as dynamics probes extends such applications also to larger proteins
    • …
    corecore